Bit Blog

Scientific Paper: What is it & How to Write it? (Steps and Format)

' src=

A white page, and a blinking cursor: How can a blank document be so intimidating? You might hear the voice of your Ph.D. professor rumbling in your head: “Well done with the research, why don’t you put all that data together in a scientific paper so we can get it published?”

Well, it’s more challenging than it sounds!

For first-time authors, the chances of writing their own scientific research may both be overwhelming and exciting. Encountered with a mountain of notes, data, remnants of the research process, and days spent doing experiments, it may be daunting to figure out where and how to begin the process of writing a scientific paper!

The good news is, you don’t have to be a talented writer to pen-down a good scientific paper, but just have to be an organized and careful writer.

This is why we have put time and effort into creating an exceptional guide on how to write a scientific paper that will help you present your research successfully to your supervisors or publications without any clutter!

Before we begin, let’s learn about the touchstones or benchmarks of scientific writing for authors!

What is a Scientific Paper? (Definition)

A scientific paper is a manuscript that represents an original work of scientific research or study. It can be an addition to the ongoing study in a field, can be groundbreaking, or a comparative study between different approaches.

Most times, a scientific paper draws the research performed by an individual or a group of people. These papers showcase valuable analysis in fields like theoretical physics, mathematics, etc., and are routinely published in scientific journals.

Read more: The Ultimate Guide on Technical Documentation

3 Golden Rules of Scientific Writing

According to a study by lijunsun, scientists and writers have identified difficulties in communicating science to the public through typical scientific prose.

Scientists doing research

Simply put, it is important for researchers to maintain a balance between receiving respect and recognition for their research in a particular field and making sure that their work is understandable to a wider audience. The latter can be achieved through clarity, simplicity, and accuracy.

Bit.ai Home Page CTA

Clarity – Research is unambiguous and free of irrelevant conjecture or detail.

Simplicity – Language, sentence, and paragraph structure are easy to comprehend and follow without losing scientific credibility or authority.

Accuracy – Data, figures, tables, references, and citations are illustrated verifiably and honestly.

Why are Scientific Papers Important?

A scientific paper is both a testing device and a teaching device.

When handled correctly, it empowers you to

  • Learn and read an assignment carefully,
  • Research the nuances of your topic,
  • Refine your focus to a strong,
  • Offer arguable thesis,
  • Select the best evidence to prove the analysis of your dissertation.

As a primary teaching device, the scientific paper in your field trains you to self-learn some rules and expectations in terms of:

  • Writing format,
  • Appropriateness of language and content,
  • Submission requirements,
  • Bibliographic styles, and much more.

As you move onward with your research, you’ll find that the scientific paper quickly becomes the educational “ coin of the realm .” Hence, it’s important to approach any scientific paper with zeal for higher learning.

Read more:  Technical Report: What is it & How to Write it? (Steps & Structure Included)

How to Write a Scientific Paper? (Steps & Format)

When you begin with writing your scientific manuscript, the first thing to consider is the format and order of sections in relation to your research or the information you want to showcase.

A scientific paper follows the  conventional format of research-based writing, which provides a deeper understanding of the purpose of each section. The structure starts with:

Step 1. Add Title in the Paper

A title should be of the fewest words possible, accurately describing the content of the paper. Try to eliminate unnecessary words such as “Investigations of …”, “A study of …”, “Observations on …”, etc.

An improperly titled scientific paper might never reach the readers for which it was intended. Hence, mention the name of the study, a particular region it was conducted in, or an element it contains in the title.

Step 2. Mention Keywords List

A keyword list offers the opportunity to add keywords, in addition to those already written in the title. Optimal use of keywords may increase the chances of interested parties to easily locate your scientific paper.

Step 3.  Add Abstract

A well-defined abstract allows the reader to identify the basic content of your paper quickly and accurately, to determine its relevance, and decide whether to read it in its entirety. The abstract briefly states the principal, scope, and objectives of the research. The abstract typically should not exceed 250 words. If you can convey the important details of the paper in 100 words, do not try to use more.

Step 4. Start with  Introduction

An introduction begins by introducing the authors and their relevant fields to the reader. A common mistake made is introducing their areas of study while not mentioning their major findings in descriptive scientific writing, enabling the reader to place the current work in context.

The ending of the introduction can be done through a statement of objectives or, with a brief statement of the principal findings. Either way, the reader must have an idea of where the paper is headed to process the development of the evidence.

Step 5. Mention Scientific  Materials and Methods Used

The primary purpose of the ‘Materials and Methods’ section is to provide enough detail for a competent worker to replicate your research and reproduce the results.

The scientific method requires your results to be reproducible, and provide a basis for the reiteration of the study by others. However, if case your material and method have been previously published in a journal, only the name of the study and a literature reference is needed.

Step 6. Write down  Results

Results display your findings, figures, and tables of your study. It represents the data, condensed, and digested with important trends that are extracted while researching. Since the results hold new knowledge that you are contributing to the world, it is important that your data is simply and clearly stated.

Step 7. Create a  Discussion Section

A discussion involves talking and answering about different aspects of the scientific paper such as: what principles have been established or reinforced; how your findings compare to the findings of others, what generalizations can be drawn, and whether there are any practical/theoretical implications of your research.

Students discussing a scientific paper

Step 8. Mention References

A list of references presented alphabetically by author’s surname, or number, based on the publication, must be provided at the end of your scientific paper. The reference list must contain all references cited in the text. Include author details such as the title of the article, year of publication, name of journal or book or volume, and page numbers with each reference

Now that you know the key elements to include in your scientific paper, it’s time to introduce you to an awesome tool that will make writing a scientific paper, a breeze!

Ditch Your Boring, Old Editor, and Write a Scientific Paper the Smart Way with Bit.ai

Bit.ai is a new-age documentation and knowledge management tool that allows researchers and teams to collaborate, share, track, and manage all knowledge and research in one place. Bit documents, unlike your standard Word Docs or Google Docs, are interactive .  This means that authors can use Bit to create interactive, media-rich scientific papers easily!

Bit.ai: Documentation tool for creating scientific papers

Thus, Bit brings together everything you need to conduct and write a comprehensive scientific paper under one roof, cutting down your efforts in half! Bit has a super easy and fun interface, making onboarding new users easier than ever!

All-in-all Bit is like Google Docs on steroids ! So, no more settling for those boring text editors when you have an excessively robust solution to walk you through!

Bit features infographic

  • Organized workspaces and folders – Bit brings all your research in one place by allowing you to organize information in workspaces and folders. Workspaces can be created around projects, studies, departments, and fields. Everyone added to a workspace can access and collaborate on its content. Inside each workspace, you can create an unlimited number of wikis and access your content library.
  • Content library –  Bit has a content library at the workspace level where you can store and share assets. You can save images, files, and content easily and can access it at any point.
  • Rich embed options – Bit.ai integrates with over 100+ web applications (Ex: YouTube, PDFs, LucidChart, Google Drive, etc.) to help you weave information in their wikis beyond just text and images.
  • Smart search – Bit has very robust search functionality that allows anyone to find information quickly. You can search for folders, files, documents, and content inside your documents across all of your workspaces.
  • Interlink documents – Bit allows authors to create unlimited documents and interlink them to create wikis that expand the knowledge base. Simply highlight the words and you have the option to create a new document.
  • Permission & sharing access – Bit supports features like document tracking, cloud upload, templates, document locking, document expiration, password protection, etc.

Our team at  bit.ai  has created a few awesome templates to make your research process more efficient. Make sure to check them out before you go, y our team might need them!

  • Case Study Template
  • Research Paper Template
  • Competitor Research Template
  • Brainstorming Template
  • SWOT Analysis Template
  • White Paper Template

Read More:  How Bit.ai Can Help You Manage Your Academic Research?

Over to You!

Scientific papers are the medium through which scientists report their work to the world. Their professional reputation is based on how these papers are acknowledged by the scientific community.

No matter how great the actual experiment is, a poorly written scientific paper may negatively affect one’s professional honor, or worse, prevent the paper from being published at all. Therefore, it is extremely crucial to learn everything about writing a scientific paper.

There is no better tool than Bit to help you save time and energy required for the whole writing process. It’s time to make a mark in the scientific community by showcasing a well-crafted scientific paper with Bit. If you want any further assistance in presenting your research, let us know by tweeting us @bit_docs. Cheers!

Further reads:

How To Write A Research Paper?

Thesis Statement: Definition, Importance, Steps & Tips!

How To Write A Case Study (With Template)

How to Write an Insane White Paper that Gets High Engagement?

writing scientific papers meaning

Request for Proposal (RFP): What is it & How to Write it? (Free Template)

9 Essential Writing Tips Every Writer Must Use!

Related posts

Motivation letter: what is it & how to write it, 17 marketing terms you must be aware of, workplace collaboration tools for productive teams, company wiki vs knowledge base: understanding the key differences, how to embed mixcloud in your documents, contract proposal: what is it & how to create it.

writing scientific papers meaning

About Bit.ai

Bit.ai is the essential next-gen workplace and document collaboration platform. that helps teams share knowledge by connecting any type of digital content. With this intuitive, cloud-based solution, anyone can work visually and collaborate in real-time while creating internal notes, team projects, knowledge bases, client-facing content, and more.

The smartest online Google Docs and Word alternative, Bit.ai is used in over 100 countries by professionals everywhere, from IT teams creating internal documentation and knowledge bases, to sales and marketing teams sharing client materials and client portals.

👉👉Click Here to Check out Bit.ai.

Recent Posts

Top 15 essential client project documents, 25 best ai tools for peak productivity, user guide: how to write an effective one (tips, examples & more), ai-powered writing tools & generators (free and paid), 10 chatgpt use cases in software development, how to lead distributed engineering teams: best practices.

Write Like a Scientist

A Guide to Scientific Communication

What is scientific writing ?

Scientific writing is a technical form of writing that is designed to communicate scientific information to other scientists. Depending on the specific scientific genre—a journal article, a scientific poster, or a research proposal, for example—some aspects of the writing may change, such as its  purpose , audience , or organization . Many aspects of scientific writing, however, vary little across these writing genres. Important hallmarks of all scientific writing are summarized below. Genre-specific information is located  here  and under the “By Genre” tab at the top of the page.

What are some important hallmarks of professional scientific writing?

1. Its primary audience is other scientists. Because of its intended audience, student-oriented or general-audience details, definitions, and explanations — which are often necessary in lab manuals or reports — are not terribly useful. Explaining general-knowledge concepts or how routine procedures were performed actually tends to obstruct clarity, make the writing wordy, and detract from its professional tone.

2. It is concise and precise . A goal of scientific writing is to communicate scientific information clearly and concisely. Flowery, ambiguous, wordy, and redundant language run counter to the purpose of the writing.

3. It must be set within the context of other published work. Because science builds on and corrects itself over time, scientific writing must be situated in and  reference the findings of previous work . This context serves variously as motivation for new work being proposed or the paper being written, as points of departure or congruence for new findings and interpretations, and as evidence of the authors’ knowledge and expertise in the field.

All of the information under “The Essentials” tab is intended to help you to build your knowledge and skills as a scientific writer regardless of the scientific discipline you are studying or the specific assignment you might be working on. In addition to discussions of audience and purpose , professional conventions like conciseness and specificity, and how to find and use literature references appropriately, we also provide guidelines for how to organize your writing and how to avoid some common mechanical errors .

If you’re new to this site or to professional scientific writing, we recommend navigating the sub-sections under “The Essentials” tab in the order they’re provided. Once you’ve covered these essentials, you might find information on  genre-  or discipline-specific writing useful.

  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing a Scientific Paper

Writing a scientific paper is very similar to writing a lab report. The structure of each is primarily the same, but the purpose of each is different. Lab reports are meant to reflect understanding of the material and learn something new, while scientific papers are meant to contribute knowledge to a field of study.  A scientific paper is broken down into eight sections: title, abstract, introduction, methods, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the research as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a scientific paper. 
  • Unlike a lab report, all scientific papers will have an abstract.
  • Why was the research done?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a scientific paper discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the research by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • In a scientific paper, most often the steps taken during the research are discussed more in length and with more detail than they are in lab reports. 
  • The results show the data that was collected or found during the research. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of a scientific paper. It analyzes the results of the research and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the research and compare your results to similar research.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • When any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • Scientific papers will always use outside references. 

Other Useful Sources

  • Guidelines for Writing Scientific Papers
  • How to Write a Scientific Article
  • Writing a Scientific Research Article
  • How to Write a Good Scientific Paper
  • << Previous: How To Write A Lab Report
  • Next: Get More Help >>
  • Last Updated: Jan 24, 2024 10:04 AM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

writing scientific papers meaning

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

This page has been archived and is no longer updated

Effective Writing

To construct sentences that reflect your ideas, focus these sentences appropriately. Express one idea per sentence. Use your current topic — that is, what you are writing about — as the grammatical subject of your sentence (see Verbs: Choosing between active and passive voice ). When writing a complex sentence (a sentence that includes several clauses), place the main idea in the main clause rather than a subordinate clause. In particular, focus on the phenomenon at hand, not on the fact that you observed it.

Constructing your sentences logically is a good start, but it may not be enough. To ensure they are readable, make sure your sentences do not tax readers' short-term memory by obliging these readers to remember long pieces of text before knowing what to do with them. In other words, keep together what goes together. Then, work on conciseness: See whether you can replace long phrases with shorter ones or eliminate words without loss of clarity or accuracy.

The following screens cover the drafting process in more detail. Specifically, they discuss how to use verbs effectively and how to take care of your text's mechanics.

Shutterstock. Much of the strength of a clause comes from its verb. Therefore, to express your ideas accurately, choose an appropriate verb and use it well. In particular, use it in the right tense, choose carefully between active and passive voice, and avoid dangling verb forms.

Verbs are for describing actions, states, or occurrences. To give a clause its full strength and keep it short, do not bury the action, state, or occurrence in a noun (typically combined with a weak verb), as in "The catalyst produced a significant increase in conversion rate." Instead write, "The catalyst increased the conversion rate significantly." The examples below show how an action, state, or occurrence can be moved from a noun back to a verb.

Using the right tense

In your scientific paper, use verb tenses (past, present, and future) exactly as you would in ordinary writing. Use the past tense to report what happened in the past: what you did, what someone reported, what happened in an experiment, and so on. Use the present tense to express general truths, such as conclusions (drawn by you or by others) and atemporal facts (including information about what the paper does or covers). Reserve the future tense for perspectives: what you will do in the coming months or years. Typically, most of your sentences will be in the past tense, some will be in the present tense, and very few, if any, will be in the future tense.

Work done We collected blood samples from . . . Groves et al. determined the growth rate of . . . Consequently, astronomers decided to rename . . . Work reported Jankowsky reported a similar growth rate . . . In 2009, Chu published an alternative method to . . . Irarrázaval observed the opposite behavior in . . . Observations The mice in Group A developed , on average, twice as much . . . The number of defects increased sharply . . . The conversion rate was close to 95% . . .

Present tense

General truths Microbes in the human gut have a profound influence on . . . The Reynolds number provides a measure of . . . Smoking increases the risk of coronary heart disease . . . Atemporal facts This paper presents the results of . . . Section 3.1 explains the difference between . . . Behbood's 1969 paper provides a framework for . . .

Future tense

Perspectives In a follow-up experiment, we will study the role of . . . The influence of temperature will be the object of future research . . .

Note the difference in scope between a statement in the past tense and the same statement in the present tense: "The temperature increased linearly over time" refers to a specific experiment, whereas "The temperature increases linearly over time" generalizes the experimental observation, suggesting that the temperature always increases linearly over time in such circumstances.

In complex sentences, you may have to combine two different tenses — for example, "In 1905, Albert Einstein postulated that the speed of light is constant . . . . " In this sentence, postulated refers to something that happened in the past (in 1905) and is therefore in the past tense, whereas is expresses a general truth and is in the present tense.

Choosing between active and passive voice

In English, verbs can express an action in one of two voices. The active voice focuses on the agent: "John measured the temperature." (Here, the agent — John — is the grammatical subject of the sentence.) In contrast, the passive voice focuses on the object that is acted upon: "The temperature was measured by John." (Here, the temperature, not John, is the grammatical subject of the sentence.)

To choose between active and passive voice, consider above all what you are discussing (your topic) and place it in the subject position. For example, should you write "The preprocessor sorts the two arrays" or "The two arrays are sorted by the preprocessor"? If you are discussing the preprocessor, the first sentence is the better option. In contrast, if you are discussing the arrays, the second sentence is better. If you are unsure what you are discussing, consider the surrounding sentences: Are they about the preprocessor or the two arrays?

The desire to be objective in scientific writing has led to an overuse of the passive voice, often accompanied by the exclusion of agents: "The temperature was measured " (with the verb at the end of the sentence). Admittedly, the agent is often irrelevant: No matter who measured the temperature, we would expect its value to be the same. However, a systematic preference for the passive voice is by no means optimal, for at least two reasons.

For one, sentences written in the passive voice are often less interesting or more difficult to read than those written in the active voice. A verb in the active voice does not require a person as the agent; an inanimate object is often appropriate. For example, the rather uninteresting sentence "The temperature was measured . . . " may be replaced by the more interesting "The measured temperature of 253°C suggests a secondary reaction in . . . ." In the second sentence, the subject is still temperature (so the focus remains the same), but the verb suggests is in the active voice. Similarly, the hard-to-read sentence "In this section, a discussion of the influence of the recirculating-water temperature on the conversion rate of . . . is presented " (long subject, verb at the end) can be turned into "This section discusses the influence of . . . . " The subject is now section , which is what this sentence is really about, yet the focus on the discussion has been maintained through the active-voice verb discusses .

As a second argument against a systematic preference for the passive voice, readers sometimes need people to be mentioned. A sentence such as "The temperature is believed to be the cause for . . . " is ambiguous. Readers will want to know who believes this — the authors of the paper, or the scientific community as a whole? To clarify the sentence, use the active voice and set the appropriate people as the subject, in either the third or the first person, as in the examples below.

Biologists believe the temperature to be . . . Keustermans et al. (1997) believe the temperature to be . . . The authors believe the temperature to be . . . We believe the temperature to be . . .

Avoiding dangling verb forms

A verb form needs a subject, either expressed or implied. When the verb is in a non-finite form, such as an infinitive ( to do ) or a participle ( doing ), its subject is implied to be the subject of the clause, or sometimes the closest noun phrase. In such cases, construct your sentences carefully to avoid suggesting nonsense. Consider the following two examples.

To dissect its brain, the affected fly was mounted on a . . . After aging for 72 hours at 50°C, we observed a shift in . . .

Here, the first sentence implies that the affected fly dissected its own brain, and the second implies that the authors of the paper needed to age for 72 hours at 50°C in order to observe the shift. To restore the intended meaning while keeping the infinitive to dissect or the participle aging , change the subject of each sentence as appropriate:

To dissect its brain, we mounted the affected fly on a . . . After aging for 72 hours at 50°C, the samples exhibited a shift in . . .

Alternatively, you can change or remove the infinitive or participle to restore the intended meaning:

To have its brain dissected , the affected fly was mounted on a . . . After the samples aged for 72 hours at 50°C, we observed a shift in . . .

In communication, every detail counts. Although your focus should be on conveying your message through an appropriate structure at all levels, you should also save some time to attend to the more mechanical aspects of writing in English, such as using abbreviations, writing numbers, capitalizing words, using hyphens when needed, and punctuating your text correctly.

Using abbreviations

Beware of overusing abbreviations, especially acronyms — such as GNP for gold nanoparticles . Abbreviations help keep a text concise, but they can also render it cryptic. Many acronyms also have several possible extensions ( GNP also stands for gross national product ).

Write acronyms (and only acronyms) in all uppercase ( GNP , not gnp ).

Introduce acronyms systematically the first time they are used in a document. First write the full expression, then provide the acronym in parentheses. In the full expression, and unless the journal to which you submit your paper uses a different convention, capitalize the letters that form the acronym: "we prepared Gold NanoParticles (GNP) by . . . " These capitals help readers quickly recognize what the acronym designates.

  • Do not use capitals in the full expression when you are not introducing an acronym: "we prepared gold nanoparticles by… "
  • As a more general rule, use first what readers know or can understand best, then put in parentheses what may be new to them. If the acronym is better known than the full expression, as may be the case for techniques such as SEM or projects such as FALCON, consider placing the acronym first: "The FALCON (Fission-Activated Laser Concept) program at…"
  • In the rare case that an acronym is commonly known, you might not need to introduce it. One example is DNA in the life sciences. When in doubt, however, introduce the acronym.

In papers, consider the abstract as a stand-alone document. Therefore, if you use an acronym in both the abstract and the corresponding full paper, introduce that acronym twice: the first time you use it in the abstract and the first time you use it in the full paper. However, if you find that you use an acronym only once or twice after introducing it in your abstract, the benefit of it is limited — consider avoiding the acronym and using the full expression each time (unless you think some readers know the acronym better than the full expression).

Writing numbers

In general, write single-digit numbers (zero to nine) in words, as in three hours , and multidigit numbers (10 and above) in numerals, as in 24 hours . This rule has many exceptions, but most of them are reasonably intuitive, as shown hereafter.

Use numerals for numbers from zero to nine

  • when using them with abbreviated units ( 3 mV );
  • in dates and times ( 3 October , 3 pm );
  • to identify figures and other items ( Figure 3 );
  • for consistency when these numbers are mixed with larger numbers ( series of 3, 7, and 24 experiments ).

Use words for numbers above 10 if these numbers come at the beginning of a sentence or heading ("Two thousand eight was a challenging year for . . . "). As an alternative, rephrase the sentence to avoid this issue altogether ("The year 2008 was challenging for . . . " ) .

Capitalizing words

Capitals are often overused. In English, use initial capitals

  • at beginnings: the start of a sentence, of a heading, etc.;
  • for proper nouns, including nouns describing groups (compare physics and the Physics Department );
  • for items identified by their number (compare in the next figure and in Figure 2 ), unless the journal to which you submit your paper uses a different convention;
  • for specific words: names of days ( Monday ) and months ( April ), adjectives of nationality ( Algerian ), etc.

In contrast, do not use initial capitals for common nouns: Resist the temptation to glorify a concept, technique, or compound with capitals. For example, write finite-element method (not Finite-Element Method ), mass spectrometry (not Mass Spectrometry ), carbon dioxide (not Carbon Dioxide ), and so on, unless you are introducing an acronym (see Mechanics: Using abbreviations ).

Using hyphens

Punctuating text.

Punctuation has many rules in English; here are three that are often a challenge for non-native speakers.

As a rule, insert a comma between the subject of the main clause and whatever comes in front of it, no matter how short, as in "Surprisingly, the temperature did not increase." This comma is not always required, but it often helps and never hurts the meaning of a sentence, so it is good practice.

In series of three or more items, separate items with commas ( red, white, and blue ; yesterday, today, or tomorrow ). Do not use a comma for a series of two items ( black and white ).

In displayed lists, use the same punctuation as you would in normal text (but consider dropping the and ).

The system is fast, flexible, and reliable.
The system is fast, flexible, reliable.

This page appears in the following eBook

Topic rooms within Scientific Communication

Topic Rooms

Within this Subject (22)

  • Communicating as a Scientist (3)
  • Papers (4)
  • Correspondence (5)
  • Presentations (4)
  • Conferences (3)
  • Classrooms (3)

Other Topic Rooms

  • Gene Inheritance and Transmission
  • Gene Expression and Regulation
  • Nucleic Acid Structure and Function
  • Chromosomes and Cytogenetics
  • Evolutionary Genetics
  • Population and Quantitative Genetics
  • Genes and Disease
  • Genetics and Society
  • Cell Origins and Metabolism
  • Proteins and Gene Expression
  • Subcellular Compartments
  • Cell Communication
  • Cell Cycle and Cell Division

ScholarCast

© 2014 Nature Education

  • Press Room |
  • Terms of Use |
  • Privacy Notice |

Send

Visual Browse

The Writing Center • University of North Carolina at Chapel Hill

What this handout is about

Nearly every element of style that is accepted and encouraged in general academic writing is also considered good practice in scientific writing. The major difference between science writing and writing in other academic fields is the relative importance placed on certain stylistic elements. This handout details the most critical aspects of scientific writing and provides some strategies for evaluating and improving your scientific prose. Readers of this handout may also find our handout on scientific reports useful.

What is scientific writing?

There are several different kinds of writing that fall under the umbrella of scientific writing. Scientific writing can include:

  • Peer-reviewed journal articles (presenting primary research)
  • Grant proposals (you can’t do science without funding)
  • Literature review articles (summarizing and synthesizing research that has already been carried out)

As a student in the sciences, you are likely to spend some time writing lab reports, which often follow the format of peer-reviewed articles and literature reviews. Regardless of the genre, though, all scientific writing has the same goal: to present data and/or ideas with a level of detail that allows a reader to evaluate the validity of the results and conclusions based only on the facts presented. The reader should be able to easily follow both the methods used to generate the data (if it’s a primary research paper) and the chain of logic used to draw conclusions from the data. Several key elements allow scientific writers to achieve these goals:

  • Precision: ambiguities in writing cause confusion and may prevent a reader from grasping crucial aspects of the methodology and synthesis
  • Clarity: concepts and methods in the sciences can often be complex; writing that is difficult to follow greatly amplifies any confusion on the part of the reader
  • Objectivity: any claims that you make need to be based on facts, not intuition or emotion

How can I make my writing more precise?

Theories in the sciences are based upon precise mathematical models, specific empirical (primary) data sets, or some combination of the two. Therefore, scientists must use precise, concrete language to evaluate and explain such theories, whether mathematical or conceptual. There are a few strategies for avoiding ambiguous, imprecise writing.

Word and phrasing choice

Often several words may convey similar meaning, but usually only one word is most appropriate in a given context. Here’s an example:

  • Word choice 1: “population density is positively correlated with disease transmission rate”
  • Word choice 2: “population density is positively related to disease transmission rate”

In some contexts, “correlated” and “related” have similar meanings. But in scientific writing, “correlated” conveys a precise statistical relationship between two variables. In scientific writing, it is typically not enough to simply point out that two variables are related: the reader will expect you to explain the precise nature of the relationship (note: when using “correlation,” you must explain somewhere in the paper how the correlation was estimated). If you mean “correlated,” then use the word “correlated”; avoid substituting a less precise term when a more precise term is available.

This same idea also applies to choice of phrasing. For example, the phrase “writing of an investigative nature” could refer to writing in the sciences, but might also refer to a police report. When presented with a choice, a more specific and less ambiguous phraseology is always preferable. This applies even when you must be repetitive to maintain precision: repetition is preferable to ambiguity. Although repetition of words or phrases often happens out of necessity, it can actually be beneficial by placing special emphasis on key concepts.

Figurative language

Figurative language can make for interesting and engaging casual reading but is by definition imprecise. Writing “experimental subjects were assaulted with a wall of sound” does not convey the precise meaning of “experimental subjects were presented with 20 second pulses of conspecific mating calls.” It’s difficult for a reader to objectively evaluate your research if details are left to the imagination, so exclude similes and metaphors from your scientific writing.

Level of detail

Include as much detail as is necessary, but exclude extraneous information. The reader should be able to easily follow your methodology, results, and logic without being distracted by irrelevant facts and descriptions. Ask yourself the following questions when you evaluate the level of detail in a paper:

  • Is the rationale for performing the experiment clear (i.e., have you shown that the question you are addressing is important and interesting)?
  • Are the materials and procedures used to generate the results described at a level of detail that would allow the experiment to be repeated?
  • Is the rationale behind the choice of experimental methods clear? Will the reader understand why those particular methods are appropriate for answering the question your research is addressing?
  • Will the reader be able to follow the chain of logic used to draw conclusions from the data?

Any information that enhances the reader’s understanding of the rationale, methodology, and logic should be included, but information in excess of this (or information that is redundant) will only confuse and distract the reader.

Whenever possible, use quantitative rather than qualitative descriptions. A phrase that uses definite quantities such as “development rate in the 30°C temperature treatment was ten percent faster than development rate in the 20°C temperature treatment” is much more precise than the more qualitative phrase “development rate was fastest in the higher temperature treatment.”

How can I make my writing clearer?

When you’re writing about complex ideas and concepts, it’s easy to get sucked into complex writing. Distilling complicated ideas into simple explanations is challenging, but you’ll need to acquire this valuable skill to be an effective communicator in the sciences. Complexities in language use and sentence structure are perhaps the most common issues specific to writing in the sciences.

Language use

When given a choice between a familiar and a technical or obscure term, the more familiar term is preferable if it doesn’t reduce precision. Here are a just a few examples of complex words and their simple alternatives:

In these examples, the term on the right conveys the same meaning as the word on the left but is more familiar and straightforward, and is often shorter as well.

There are some situations where the use of a technical or obscure term is justified. For example, in a paper comparing two different viral strains, the author might repeatedly use the word “enveloped” rather than the phrase “surrounded by a membrane.” The key word here is “repeatedly”: only choose the less familiar term if you’ll be using it more than once. If you choose to go with the technical term, however, make sure you clearly define it, as early in the paper as possible. You can use this same strategy to determine whether or not to use abbreviations, but again you must be careful to define the abbreviation early on.

Sentence structure

Science writing must be precise, and precision often requires a fine level of detail. Careful description of objects, forces, organisms, methodology, etc., can easily lead to complex sentences that express too many ideas without a break point. Here’s an example:

The osmoregulatory organ, which is located at the base of the third dorsal spine on the outer margin of the terminal papillae and functions by expelling excess sodium ions, activates only under hypertonic conditions.

Several things make this sentence complex. First, the action of the sentence (activates) is far removed from the subject (the osmoregulatory organ) so that the reader has to wait a long time to get the main idea of the sentence. Second, the verbs “functions,” “activates,” and “expelling” are somewhat redundant. Consider this revision:

Located on the outer margin of the terminal papillae at the base of the third dorsal spine, the osmoregulatory organ expels excess sodium ions under hypertonic conditions.

This sentence is slightly shorter, conveys the same information, and is much easier to follow. The subject and the action are now close together, and the redundant verbs have been eliminated. You may have noticed that even the simpler version of this sentence contains two prepositional phrases strung together (“on the outer margin of…” and “at the base of…”). Prepositional phrases themselves are not a problem; in fact, they are usually required to achieve an adequate level of detail in science writing. However, long strings of prepositional phrases can cause sentences to wander. Here’s an example of what not to do from Alley (1996):

“…to confirm the nature of electrical breakdown of nitrogen in uniform fields at relatively high pressures and interelectrode gaps that approach those obtained in engineering practice, prior to the determination of the processes that set the criterion for breakdown in the above-mentioned gases and mixtures in uniform and non-uniform fields of engineering significance.”

The use of eleven (yes, eleven!) prepositional phrases in this sentence is excessive, and renders the sentence nearly unintelligible. Judging when a string of prepositional phrases is too long is somewhat subjective, but as a general rule of thumb, a single prepositional phrase is always preferable, and anything more than two strung together can be problematic.

Nearly every form of scientific communication is space-limited. Grant proposals, journal articles, and abstracts all have word or page limits, so there’s a premium on concise writing. Furthermore, adding unnecessary words or phrases distracts rather than engages the reader. Avoid generic phrases that contribute no novel information. Common phrases such as “the fact that,” “it should be noted that,” and “it is interesting that” are cumbersome and unnecessary. Your reader will decide whether or not your paper is interesting based on the content. In any case, if information is not interesting or noteworthy it should probably be excluded.

How can I make my writing more objective?

The objective tone used in conventional scientific writing reflects the philosophy of the scientific method: if results are not repeatable, then they are not valid. In other words, your results will only be considered valid if any researcher performing the same experimental tests and analyses that you describe would be able to produce the same results. Thus, scientific writers try to adopt a tone that removes the focus from the researcher and puts it only on the research itself. Here are several stylistic conventions that enhance objectivity:

Passive voice

You may have been told at some point in your academic career that the use of the passive voice is almost always bad, except in the sciences. The passive voice is a sentence structure where the subject who performs the action is ambiguous (e.g., “you may have been told,” as seen in the first sentence of this paragraph; see our handout on passive voice and this 2-minute video on passive voice for a more complete discussion).

The rationale behind using the passive voice in scientific writing is that it enhances objectivity, taking the actor (i.e., the researcher) out of the action (i.e., the research). Unfortunately, the passive voice can also lead to awkward and confusing sentence structures and is generally considered less engaging (i.e., more boring) than the active voice. This is why most general style guides recommend only sparing use of the passive voice.

Currently, the active voice is preferred in most scientific fields, even when it necessitates the use of “I” or “we.” It’s perfectly reasonable (and more simple) to say “We performed a two-tailed t-test” rather than to say “a two-tailed t-test was performed,” or “in this paper we present results” rather than “results are presented in this paper.” Nearly every current edition of scientific style guides recommends the active voice, but different instructors (or journal editors) may have different opinions on this topic. If you are unsure, check with the instructor or editor who will review your paper to see whether or not to use the passive voice. If you choose to use the active voice with “I” or “we,” there are a few guidelines to follow:

  • Avoid starting sentences with “I” or “we”: this pulls focus away from the scientific topic at hand.
  • Avoid using “I” or “we” when you’re making a conjecture, whether it’s substantiated or not. Everything you say should follow from logic, not from personal bias or subjectivity. Never use any emotive words in conjunction with “I” or “we” (e.g., “I believe,” “we feel,” etc.).
  • Never use “we” in a way that includes the reader (e.g., “here we see trait evolution in action”); the use of “we” in this context sets a condescending tone.

Acknowledging your limitations

Your conclusions should be directly supported by the data that you present. Avoid making sweeping conclusions that rest on assumptions that have not been substantiated by your or others’ research. For example, if you discover a correlation between fur thickness and basal metabolic rate in rats and mice you would not necessarily conclude that fur thickness and basal metabolic rate are correlated in all mammals. You might draw this conclusion, however, if you cited evidence that correlations between fur thickness and basal metabolic rate are also found in twenty other mammalian species. Assess the generality of the available data before you commit to an overly general conclusion.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

Alley, Michael. 1996. The Craft of Scientific Writing , 3rd ed. New York: Springer.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Day, Robert, and Nancy Sakaduski. 2011. Scientific English: A Guide for Scientists and Other Professionals , 3rd ed. Santa Barbara: Greenwood.

Gartland, John J. 1993. Medical Writing and Communicating . Frederick, MD: University Publishing Group.

Williams, Joseph M., and Joseph Bizup. 2016. Style: Ten Lessons in Clarity and Grace , 12th ed. New York: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report
  • INTRODUCTION

Writing a "good" results section

Figures and Captions in Lab Reports

"Results Checklist" from: How to Write a Good Scientific Paper. Chris A. Mack. SPIE. 2018.

Additional tips for results sections.

  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Peer Review
  • Presentations
  • Lab Report Writing Guides on the Web

This is the core of the paper. Don't start the results sections with methods you left out of the Materials and Methods section. You need to give an overall description of the experiments and present the data you found.

  • Factual statements supported by evidence. Short and sweet without excess words
  • Present representative data rather than endlessly repetitive data
  • Discuss variables only if they had an effect (positive or negative)
  • Use meaningful statistics
  • Avoid redundancy. If it is in the tables or captions you may not need to repeat it

A short article by Dr. Brett Couch and Dr. Deena Wassenberg, Biology Program, University of Minnesota

  • Present the results of the paper, in logical order, using tables and graphs as necessary.
  • Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. 
  • Avoid: presenting results that are never discussed;  presenting results in chronological order rather than logical order; ignoring results that do not support the conclusions; 
  • Number tables and figures separately beginning with 1 (i.e. Table 1, Table 2, Figure 1, etc.).
  • Do not attempt to evaluate the results in this section. Report only what you found; hold all discussion of the significance of the results for the Discussion section.
  • It is not necessary to describe every step of your statistical analyses. Scientists understand all about null hypotheses, rejection rules, and so forth and do not need to be reminded of them. Just say something like, "Honeybees did not use the flowers in proportion to their availability (X2 = 7.9, p<0.05, d.f.= 4, chi-square test)." Likewise, cite tables and figures without describing in detail how the data were manipulated. Explanations of this sort should appear in a legend or caption written on the same page as the figure or table.
  • You must refer in the text to each figure or table you include in your paper.
  • Tables generally should report summary-level data, such as means ± standard deviations, rather than all your raw data.  A long list of all your individual observations will mean much less than a few concise, easy-to-read tables or figures that bring out the main findings of your study.  
  • Only use a figure (graph) when the data lend themselves to a good visual representation.  Avoid using figures that show too many variables or trends at once, because they can be hard to understand.

From:  https://writingcenter.gmu.edu/guides/imrad-results-discussion

  • << Previous: METHODS
  • Next: DISCUSSION >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

  • Skip to Guides Search
  • Skip to breadcrumb
  • Skip to main content
  • Skip to footer
  • Skip to chat link
  • Report accessibility issues and get help
  • Go to Penn Libraries Home
  • Go to Franklin catalog

Critical Writing Program: Decision Making - Spring 2024: Researching the White Paper

  • Getting started
  • News and Opinion Sites
  • Academic Sources
  • Grey Literature
  • Substantive News Sources
  • What to Do When You Are Stuck
  • Understanding a citation
  • Examples of Quotation
  • Examples of Paraphrase
  • Chicago Manual of Style: Citing Images
  • Researching the Op-Ed
  • Researching Prospective Employers
  • Resume Resources
  • Cover Letter Resources

Research the White Paper

Researching the White Paper:

The process of researching and composing a white paper shares some similarities with the kind of research and writing one does for a high school or college research paper. What’s important for writers of white papers to grasp, however, is how much this genre differs from a research paper.  First, the author of a white paper already recognizes that there is a problem to be solved, a decision to be made, and the job of the author is to provide readers with substantive information to help them make some kind of decision--which may include a decision to do more research because major gaps remain. 

Thus, a white paper author would not “brainstorm” a topic. Instead, the white paper author would get busy figuring out how the problem is defined by those who are experiencing it as a problem. Typically that research begins in popular culture--social media, surveys, interviews, newspapers. Once the author has a handle on how the problem is being defined and experienced, its history and its impact, what people in the trenches believe might be the best or worst ways of addressing it, the author then will turn to academic scholarship as well as “grey” literature (more about that later).  Unlike a school research paper, the author does not set out to argue for or against a particular position, and then devote the majority of effort to finding sources to support the selected position.  Instead, the author sets out in good faith to do as much fact-finding as possible, and thus research is likely to present multiple, conflicting, and overlapping perspectives. When people research out of a genuine desire to understand and solve a problem, they listen to every source that may offer helpful information. They will thus have to do much more analysis, synthesis, and sorting of that information, which will often not fall neatly into a “pro” or “con” camp:  Solution A may, for example, solve one part of the problem but exacerbate another part of the problem. Solution C may sound like what everyone wants, but what if it’s built on a set of data that have been criticized by another reliable source?  And so it goes. 

For example, if you are trying to write a white paper on the opioid crisis, you may focus on the value of  providing free, sterilized needles--which do indeed reduce disease, and also provide an opportunity for the health care provider distributing them to offer addiction treatment to the user. However, the free needles are sometimes discarded on the ground, posing a danger to others; or they may be shared; or they may encourage more drug usage. All of those things can be true at once; a reader will want to know about all of these considerations in order to make an informed decision. That is the challenging job of the white paper author.     
 The research you do for your white paper will require that you identify a specific problem, seek popular culture sources to help define the problem, its history, its significance and impact for people affected by it.  You will then delve into academic and grey literature to learn about the way scholars and others with professional expertise answer these same questions. In this way, you will create creating a layered, complex portrait that provides readers with a substantive exploration useful for deliberating and decision-making. You will also likely need to find or create images, including tables, figures, illustrations or photographs, and you will document all of your sources. 

Business & Research Support Services Librarian

Profile Photo

Connect to a Librarian Live Chat or "Ask a Question"

  • Librarians staff live chat from 9-5 Monday through Friday . You can also text to chat: 215-543-7674
  • You can submit a question 24 hours a day and we aim to respond within 24 hours 
  • You can click the "Schedule Appointment" button above in librarian's profile box (to the left), to schedule a consultation with her in person or by video conference.  
  • You can also make an appointment with a  Librarian by subject specialization . 
  • Connect by email with a subject librarian

Find more easy contacts at our Quick Start Guide

  • Next: Getting started >>
  • Last Updated: Feb 15, 2024 12:28 PM
  • URL: https://guides.library.upenn.edu/spring2024/decision-making

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

How to write and publish a scientific manuscript.

Martin R. Huecker ; Jacob Shreffler .

Affiliations

Last Update: October 31, 2022 .

  • Definition/Introduction

A clinician should continuously strive to increase knowledge by reviewing and critiquing papers, thoughtfully considering how to integrate new data into practice. This is the essence of evidence-based medicine (EBM). [1]  When new clinical queries arise, one should seek answers in the published literature. The ability to read a scientific or medical manuscript remains vitally important throughout the career of a clinician.

When gaps exist in the literature, clinicians should consider conducting their own research into these questions. Though typically performed by academic doctors or physician-scientists, medical research is open to all clinicians in both informal and formal methods. Anyone who treats patients can collect data on outcomes to assess the quality of care delivered (quality improvement is research). [2]  Though beyond the scope of this chapter, instruction for clinicians on how to conduct research and contribute to medical science is provided by many resources. [3] [4] [5]

Additionally, a clinician who integrates a new practice can study effects on patient outcomes, retro- or prospectively. Continuous practice improvement need not be shared with the larger population of treating providers, but dissemination to the entire scientific community allows widespread adoption, criticism, or further testing for replication of findings.

  • Issues of Concern

Clinicians who seek to conduct retrospective chart reviews, prospective studies, or even randomized, controlled clinical trials should access the many resources to ensure quality methodology. [5] Once you have followed the appropriate steps to conduct a study (Table 1), you should complete the process by writing a manuscript to describe your findings and share it with other clinicians and researchers. Other resources detail the steps in undertaking writing a review article, but this StatPearls chapter will focus on Writing a Scientific Manuscript for original research. See also the StatPearls chapter for the different types of research manuscripts. [6]

  • Clinical Significance

Steps to Conducting Research

  • Develop a research question
  • Perform a literature search
  • Identify a gap in the literature
  • Design a study protocol (including personnel)
  • Submit to an institutional review board for approval
  • Collect, responsibly store, and then analyze data
  • Write a manuscript to interpret and describe your research.

After conducting a quality investigation or a study, one should put together an abstract and manuscript to share results. Researchers can write an abstract in a short amount of time, though the abstract will evolve as the full manuscript moves to completion. Many published and presented abstracts do not reach full manuscript publication. [7] [8]  Although journals and conferences do often publish abstracts, studies with important results should be published in full manuscript form to ensure dissemination and allow attempts at replication. [9]

IRB protocols, study design, and data collection and aggregation require a team effort. Those involved in the research should discuss who will contribute to the full manuscript (i.e., qualify as an author) and thus the planned order of authorship to reduce complications at the time of manuscript submission. The author, who devotes the most effort to the paper, is typically the first and corresponding author. In contrast, the last author is often the most senior member of the team, often the principal investigator of the study. All individuals listed as authors should contribute to the manuscript and overall project in some fashion. [10]

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist is perhaps the most valuable tool in the process of preparing your manuscript for submission [11] . 

Original research manuscripts have the following sections (in chronologic order): [11]

Title and Abstract

Introduction (Background and Objectives)

Methods (Design, Setting, Participants, Variables, Statistics)

Results (Participants, Descriptives, Outcomes, Subgroups)

Tables and Figures     

Discussion (Key findings, Limitations, Interpretations)

Conflict of Interest (COI), Author affiliations, Acknowledgments, Funding

Individuals involved in the IRB submission (prior to data collection) can write the introduction and methods of the manuscript before and during the process of data collection and analysis. This head start on writing makes the full manuscript composition task less formidable. The content of the introduction and methods should be well known to the study group prior to data collection and analysis. The introduction should be organized into a “problem/gap/hook” order: what problem does this study address, the precise gap in the literature, and the objectives of this study (in addressing the gap). [12]  The methods should provide enough detail such that readers who would like to replicate the study could do so.

Once data is collected and analyzed, authors can write an abstract to organize major themes of the research, understanding that the abstract will undergo edits once the manuscript is complete. Similarly, the title can change with revisions, as authors determine the most salient trends in the data. Most readers will only read the title +/- abstract. Thus these are the most important sections of the paper. The title should be concise and should directly describe the results of the trial– this correlates with more citations. The abstract must convey the crucial findings of the paper, ideally divided into sections for easier reading (unless the desired journal does not allow this). [13]

With the larger picture in mind, authors should create tables and figures that visually convey the themes of the data analysis. Working with statisticians or data experts, authors should devote a great deal of time to this component of the manuscript. Some general concepts: [14]

  • Only include tables/figures that you believe are necessary.
  • Make sure tables/figures are of high quality, simple, clear, with concise captions.
  • Do not repeat language in results that appear in tables/figures, i.e., the tables/figures should stand alone.
  • Consider how the figure will look in grayscale (in case the journal if not in color)

As with the abstract and title, the tables and figures will likely undergo further edits prior to the completion of the manuscript. The abstract and tables/figures should intuitively evolve together to convey the ‘story’ of the research project.

At this point, refer back to the introduction and methods composed during data collection. Make revisions as necessary to reflect the overall narrative of the project. Ensure you have adhered to the originally determined objectives or hypotheses. 

Next, focus on the results and discussion. The results should contain only objective data with no interpretation of significance. Describe salient results than do not already receive explanations within the figures and tables. The discussion section begins with a lead paragraph highlighting the most important findings from the study. Then the discussion interprets the current results in light of prior published literature. Ensure citation of keystone papers on this topic, including new papers that have been published since embarking on the current project. Frame your results, describing how this study adds to the literature. The discussion section usually includes study limitations. Attempt to anticipate criticisms of the methodology, the results, the organization of the manuscript itself, and the (ability to draw) conclusions. A stronger limitations section preempts journal reviewer feedback, potentially simplifying the revision/resubmission process.

The conclusion section should be concise, conveying the main take-home points from your study. You can make recommendations for current clinical practice and for future research endeavors. Finally, consider using citation management software such as Endnote or Mendeley. Though initially cumbersome, these software platforms drastically improve revision efforts and allow for easy reference reformatting.  All authors should review the manuscript multiple times, potentially sharing with other uninvolved colleagues for objective feedback. Consider who should receive acknowledgment for supporting the project and prepare to disclose conflicts of interest and funding.

Although authors should have an initial idea of which journal to submit to, once the manuscript is near completion, this decision will be more straightforward. Journal rankings are beyond the scope of this StatPearls chapter. Still, generally, one should devise a list of the journals within a specialty in order of highest to lowest impact factor (some sites categorize into tiers). High-quality prospective research and clinical trials have a higher likelihood of acceptance into the more prestigious journals within a specialty or to the high-quality general science or medicine journals. Although many journals have an option for open access publication, and numerous legitimate, open access journals now exist, beware of ‘predatory journals’ that charge a fee to publish and may not be indexed in Pubmed or other databases. [12]

Journals have diverse guidelines for formatting and submission, and the manuscript submission process can be tedious. Prior to submission, review Bordage’s paper on reasons for manuscript rejection. [15]  Most journals require a title page and cover letter, the latter of which represents an opportunity to lobby for your paper’s importance. When (not if) you experience manuscript rejections, take reviewer comments and recommendations seriously. Use this valuable feedback for resubmission to the original journal (when invited) or for subsequent submission to other journals. When submitting a requested revision, compose a point by point response to the reviewers and attach a new manuscript with tracked changes. Attempt to resubmit manuscripts as promptly as possible, keeping your work in the hands of journals (allowing you to work on other research). [14]

  • Nursing, Allied Health, and Interprofessional Team Interventions

The above logistic steps will differ for review articles, case reports, editorials, and other types of submissions. [16]  However, the organization, precise methods, and adherence to journal guidelines remain important. See work by Provenzale on principles to increase the likelihood of acceptance for original and revised manuscripts. After submission, revision, resubmission, and proofing, you may experience the fulfillment of an official publication. Academics should promote their scientific work, enhancing the dissemination of research to the wider scientific community. [17] [18] [17] [19]

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Disclosure: Martin Huecker declares no relevant financial relationships with ineligible companies.

Disclosure: Jacob Shreffler declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Huecker MR, Shreffler J. How To Write And Publish A Scientific Manuscript. [Updated 2022 Oct 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Rules to be adopted for publishing a scientific paper. [Ann Ital Chir. 2016] Rules to be adopted for publishing a scientific paper. Picardi N. Ann Ital Chir. 2016; 87:1-3.
  • Original research in pathology: judgment, or evidence-based medicine? [Lab Invest. 2007] Original research in pathology: judgment, or evidence-based medicine? Crawford JM. Lab Invest. 2007 Feb; 87(2):104-14.
  • [Personal suggestions to write and publish SCI cited papers]. [Shanghai Kou Qiang Yi Xue. 2006] [Personal suggestions to write and publish SCI cited papers]. Jian XC. Shanghai Kou Qiang Yi Xue. 2006 Apr; 15(2):221-3.
  • Review Evidence-based toxicology: a comprehensive framework for causation. [Hum Exp Toxicol. 2005] Review Evidence-based toxicology: a comprehensive framework for causation. Guzelian PS, Victoroff MS, Halmes NC, James RC, Guzelian CP. Hum Exp Toxicol. 2005 Apr; 24(4):161-201.
  • Review Evidence-based medicine in treatment and rehabilitation of spinal cord injured. [Spinal Cord. 2005] Review Evidence-based medicine in treatment and rehabilitation of spinal cord injured. Biering-Sørensen F. Spinal Cord. 2005 Oct; 43(10):587-92.

Recent Activity

  • How To Write And Publish A Scientific Manuscript - StatPearls How To Write And Publish A Scientific Manuscript - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

AI Writes Scientific Papers That Sound Great—but Aren’t Accurate

Logo Photo Illustration

F irst came the students, who wanted help with their homework and essays. Now, ChatGPT is luring scientists, who are under pressure to publish papers in reputable scientific journals.

AI is already disrupting the archaic world of scientific publishing. When Melissa Kacena, vice chair of orthopaedic surgery at Indiana University School of Medicine, reviews articles submitted for publication in journals, she now knows to look out for ones that might have been written by the AI program. “I have a rule of thumb now that if I pull up 10 random references cited in the paper, and if more than one isn’t accurate, then I reject the paper,” she says.

But despite the pitfalls, there is also promise. Writing review articles, for example, is a task well suited to AI: it involves sifting through the existing research on a subject, analyzing the results, reaching a conclusion about the state of the science on the topic, and providing some new insight. ChatGPT can do all of those things well.

Kacena decided to see who is better at writing review articles: people or ChatGPT. For her study published in Current Osteoporosis Reports , she sorted nine students and the AI program into three groups and asked each group to write a review article on a different topic. For one group, she asked the students to write review articles on the topics; for another, she instructed ChatGPT to write articles on the same topics; and for the last group, she gave each of the students their own ChatGPT account and told them to work together with the AI program to write articles. That allowed her to compare articles written by people, by AI, and a combination of people and AI. She asked faculty member colleagues and the students to fact check each of the articles, and compared the three types of articles on measures like accuracy, ease of reading, and use of appropriate language.

Read More : To Make a Real Difference in Health Care, AI Will Need to Learn Like We Do

The results were eye-opening. The articles written by ChatGPT were easy to read and were even better written than the students'. But up to 70% of the cited references were inaccurate: they were either incoherently merged from several different studies or completely fictitious. The AI versions were also more likely to be plagiarized.

“ChatGPT was pretty convincing with some of the phony statements it made, to be honest,” says Kacena. “It used the proper syntax and integrated them with proper statements in a paragraph, so sometimes there were no warning bells. It was only because the faculty members had a good understanding of the data, or because the students fact checked everything, that they were detected.”

There were some advantages to the AI-generated articles. The algorithm was faster and more efficient in processing all the required data, and in general, ChatGPT used better grammar than the students. But it couldn't always read the room: AI tended to use more flowery language that wasn’t always appropriate for scientific journals (unless the students had told ChatGPT to write it from the perspective of a graduate-level science student.)

Read More : The 100 Most Influential People in AI

That reflects a truth about the use of AI: it's only as good as the information it receives. While ChatGPT isn’t quite ready to author scientific journal articles, with the proper programming and training, it could improve and become a useful tool for researchers. “Right now it’s not great by itself, but it can be made to work,” says Kacena. For example, if queried, the algorithm was good at recommending ways to summarize data in figures and graphical depictions. “The advice it gave on those were spot on, and exactly what I would have done,” she says.

The more feedback the students provided on ChatGPT's work, the better it learned—and that represents its greatest promise. In the study, some students found that when they worked together with ChatGPT to write the article, the program continued to improve and provide better results if they told it what things it was doing right, and what was less helpful. That means that addressing problems like questionable references and plagiarism could potentially be fixed. ChatGPT could be programmed, for example, to not merge references and to treat each scientific journal article as its own separate reference, and to limit copying consecutive words to avoid plagiarism.

With more input and some fixes, Kacena believes that AI could help researchers smooth out the writing process and even gain scientific insights. "I think ChatGPT is here to stay, and figuring out how to make it better, and how to use it in an ethical and conscientious and scientifically sound manner, is going to be really important,” she says.

More Must-Reads From TIME

  • Meet the 2024 Women of the Year
  • Greta Gerwig's Next Big Swing 
  • East Palestine, One Year After Train Derailment
  • In the Belly of MrBeast
  • The Closers: 18 People Working to End the Racial Wealth Gap
  • How Long Should You Isolate With COVID-19?
  • The Best Romantic Comedies to Watch on Netflix
  • Want Weekly Recs on What to Watch, Read, and More? Sign Up for Worth Your Time

Contact us at [email protected]

You May Also Like

IMAGES

  1. How to Write a Scientific Paper

    writing scientific papers meaning

  2. How to Write a Scientific Paper || Writing Research Papers

    writing scientific papers meaning

  3. How To Write An Effective Research Paper Abstract For College: 4 Types

    writing scientific papers meaning

  4. How to Write a Scientific Paper

    writing scientific papers meaning

  5. Anatomy of a Scientific Research Paper

    writing scientific papers meaning

  6. Tips For How To Write A Scientific Research Paper

    writing scientific papers meaning

COMMENTS

  1. Scientific Paper: What is it & How to Write it? (Steps and Format)

    (Definition) A scientific paper is a manuscript that represents an original work of scientific research or study. It can be an addition to the ongoing study in a field, can be groundbreaking, or a comparative study between different approaches. Most times, a scientific paper draws the research performed by an individual or a group of people.

  2. What is scientific writing?

    Scientific writing is a technical form of writing that is designed to communicate scientific information to other scientists. Depending on the specific scientific genre—a journal article, a scientific poster, or a research proposal, for example—some aspects of the writing may change, such as its purpose, audience, or organization.

  3. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    Clear scientific writing generally follows a specific format with key sections: an introduction to a particular topic, hypotheses to be tested, a description of methods, key results, and finally, a discussion that ties these results to our broader knowledge of the topic (Day and Gastel 2012 ).

  4. 7 Features of Scientific Writing (Plus Definition and Tips)

    Thoroughness: Scientific writers offer as many details in their publications as are necessary for their readers to thoroughly understand the subject. Exact language: A scientific paper minimizes the use of figurative or imaginative language. Scientific writers use words and phrases that convey their literal meaning.

  5. PDF How to Write and Publish a Scientific Paper

    978-1-107-67074-7 - How to Write and Publish a Scientific Paper: Seventh Edition Robert A. Day and Barbara Gastel Frontmatter More information ... Definition of a Scientific Paper 18 Organization of a Scientific Paper 20 Other Definitions 22 5 Ethics in Scientific Publishing 24

  6. Scientific Papers

    Scientific papers are for sharing your own original research work with other scientists or for reviewing the research conducted by others. As such, they are critical to the evolution of modern...

  7. How to write a first-class paper

    Scientific writing should be factual, concise and evidence-based, but that doesn't mean it can't also be creative — told in a voice that is original — and engaging (Z. A. Doubleday et al ...

  8. Library Research Guides: STEM: How To Write A Scientific Paper

    Writing a scientific paper is very similar to writing a lab report. The structure of each is primarily the same, but the purpose of each is different. Lab reports are meant to reflect understanding of the material and learn something new, while scientific papers are meant to contribute knowledge to a field of study.

  9. Guide: Writing the Scientific Paper

    Writing the Scientific Paper When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

  10. How to Write and Publish a Scientific Paper (Project ...

    Module 1 • 3 hours to complete. In this section of the MOOC, you will learn what is necessary before writing a paper: the context in which the scientist is publishing. You will learn how to know your own community, through different exemples, and then we will present you how scientific journal and publication works.

  11. Writing a scientific article: A step-by-step guide for beginners

    1. Background Every researcher has been face to face with a blank page at some stage of their career, wondering where to start and what to write first. Describing one's research work in a format that is comprehensible to others, and acceptable for publication is no easy task.

  12. Writing Science: What Makes Scientific Writing Hard and How to Make It

    When we do discuss writing with students, trainees, and peers, we emphasize the mechanics: how to structure a manuscript, the style conventions of scientific writing, and the submission process (Guilford 2001, Turbek et al. 2016). As a scientific community, we rarely discuss the actual act of scientific writing itself.

  13. Successful Scientific Writing and Publishing: A Step-by-Step Approach

    We include an overview of basic scientific writing principles, a detailed description of the sections of an original research article, and practical recommendations for selecting a journal and responding to peer review comments.

  14. Effective Writing

    Effective Writing. Constructing effective sentences. Effective writing is readable — that is, clear, accurate, and concise. When you are writing a paper, try to get your ideas across in such a ...

  15. How to write a scientific manuscript for publication

    The anatomy of a paper: from origin to current format. The history of scientific journals dates from 1665, when the French "Journal des sçavans" and the English "Philosophical Transactions of the Royal Society" first began systematically publishing research results 7.From then on, the initial structure of scientific papers evolved gradually from letters (usually by a single author ...

  16. Scientific writing

    Scientific writing is writing about science, with an implication that the writing is by scientists and for an audience that primarily includes peers —those with sufficient expertise to follow in detail. [1] (

  17. HOW TO WRITE A SCIENTIFIC ARTICLE

    The task of writing a scientific paper and submitting it to a journal for publication is a time‐consuming and often daunting task. 3, 4 Barriers to effective writing include lack of experience, poor writing habits, writing anxiety, unfamiliarity with the requirements of scholarly writing, lack of confidence in writing ability, fear of failure, a...

  18. Sciences

    Regardless of the genre, though, all scientific writing has the same goal: to present data and/or ideas with a level of detail that allows a reader to evaluate the validity of the results and conclusions based only on the facts presented.

  19. PDF How to Write a Scientific Paper

    the theory that it is difficult to do good science, write good scientific papers, and have enough publications to get future jobs. 1. Introduction ... presented observations on the scientific publishing process which (meaning that) are important and timely in that unless I have more published papers soon, I will never get another ...

  20. Overview and Principles of Scientific Writing

    Writing a scientific paper is a tedious task even to experienced writers; but it is particularly so for the early career professionals such as students, trainees, scientists and scholars in ...

  21. A Guide to Writing a Scientific Paper: A Focus on High School Through

    The gold standard is writing scientific papers that describe original research in such a way that other scientists will be able to repeat it or to use it as a basis for their studies. 1 For some, it is expected that such articles will be published in scientific journals after they have been peer reviewed and accepted for publication.

  22. Writing a Scientific Paper

    Present the results of the paper, in logical order, using tables and graphs as necessary. Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. Avoid: presenting results that are never discussed; presenting ...

  23. Researching the White Paper

    Researching the White Paper: The process of researching and composing a white paper shares some similarities with the kind of research and writing one does for a high school or college research paper. What's important for writers of white papers to grasp, however, is how much this genre differs from a research paper.

  24. How To Write And Publish A Scientific Manuscript

    How To Write And Publish A Scientific Manuscript Martin R. Huecker; Jacob Shreffler. Author Information and Affiliations Last Update: October 31, 2022. Go to: Definition/Introduction A clinician should continuously strive to increase knowledge by reviewing and critiquing papers, thoughtfully considering how to integrate new data into practice.

  25. AI Writes Scientific Papers That Sound Great—But Aren't Accurate

    The results were eye-opening. The articles written by ChatGPT were easy to read and were even better written than the students'. But up to 70% of the cited references were inaccurate: they were ...