Water Recycling Essay

Introduction, the safety of drinking recycled water, risks associated with using reclaimed water, recycled water saves fresh potable water, reference list.

Recycled water is obtained from waste water and contaminated water that has been subjected to thorough treatment to ensure that it is proper for use for different purposes. A major benefit of recycled water is offering a sustainable and dependable source of water while decreasing demands on water provision that is brought about by the rising population (Hurlimann 2011).

To make sure that the rising population gets adequate water to satisfy all their requirements, there is a need for recycling of water and enlarging the application of reclaimed water. This paper seeks to determine if recycled water is safe for drinking.

  • It is assessed to avoid risk for human health. If the right procedure is followed, recycling of water makes it safe for drinking (Mankad & Tapsuwan 2011). Regular checking and treatment is necessary to make sure that recycled water is suitable for human consumption. For instance, the designated regulatory bodies in every Australian state endorse water systems to guarantee its safety for the intended purpose. The regulatory bodies are typically the departments accountable for safety and environment. They evaluate the degree of danger to human beings and the surroundings to establish whether a water recycling plan should be endorsed.
  • There is no instance where thoroughly recycled water caused illness. Reclaimed water has not brought about any disease anywhere across the globe. This has paved way for Australia as well as other countries to boost their dependence on recycled water (Burton et al. 2007).
  • Current methods make recycled water safe for drinking. Contemporary water recycling practices have eradicated microbial organisms to a degree that they are harmless to humans. On this note, there is a high chance of applying recycled water for different purposes in addition to drinking. Currently, science is concentrating on boosting the effectiveness of water recycling practices through reduction of costs, as well as greenhouse gases (Pelusey & Pelusey 2006).
  • Doubt. For a long time, it has been possible to convert sewage to safe, drinking water and this has acted as an excellent solution for water-scarce areas (Brown, Farrelly & Keath 2009). Nevertheless, this technology is not extensively applied, and even in some areas where it is applied, nobody in reality drinks the recycled water, not directly in any case. Many people still doubt the safety of recycled water for drinking.
  • Psychological point of view. The psychological aspect is what makes people not directly drink recycled water, since people are hesitant to consume anything that they know has come from the toilet. Though recycled water may not be harmful, it may not auger well with people’s mindset after knowing that they have for once drunk it (Dolnicar & Hurlimann 2011). Even though recycling of water removes the contaminants, it is not able to detach its initial uniqueness as sewage.
  • Recycled water is meant for non-potable functions. Reclaimed water is former sewage with contaminants removed and is employed for applications like irrigation. The aim of recycling is water conservation and not releasing recycled water for human consumption.
  • Presence of pathogens. The description of recycled water as applied by Friedler and Hadari (2006) is the outcome of sewage reclamation that satisfies water value necessities for eco-friendly substance, suspended stuff, and pathogens. In other conventional application, recycled water denotes water that has not been highly purified with the purpose of providing a means of conserving potable water; this water is instead used for agriculture and other uses like laundry (Hurlimann & McKay 2007).
  • Poor assessment standards. The states regulate recycled water and not the Environmental Protection Agency (EPA). Recent studies have proved that recycled water poses stern public health issues concerning pathogens in it that are not detected by the presently employed tests (Birks & Hills 2007). Moreover, the present tests fail to regard connections of heavy metals and pharmaceutics, which could promote the development of drug resistant microbes in recycled water obtained from sewage.
  • Cost. The outlay on recycling water surpasses that of treating fresh water in different areas across the globe, where there is plenty of water (Kemp et al. 2012). Nevertheless, recycled water is normally distributed to people at a lower cost to persuade them to make use of it. Though, in most cases, recycled water is not used for drinking, it saves drinking water that could otherwise have been used for other purposes as little or no potable water will be employed for non-drinking purposes.
  • Rich in nutrients. In most instances, recycled water is rich in nutrients like phosphorus and nitrogen that supports the growing crops in cases of its use in irrigation (Jarwal 2006). In this case, it turns out better and replaces drinking water that could otherwise have been used.

Breaking the characteristic of recycled water as water obtained from sewage and minimizing the difference between recycled water and fresh tap water may assist in the acceptance of recycled water even for potable purposes (Binnie, Kimber & Water 2009). Moreover, a different solution could be sending of properly tested recycled water into people’s taps for their use without initially informing them.

If people are then taught of its safety and it is proved to them through testing it, they may accept it without doubt. Nevertheless, recycled water must undergo thorough assessment and testing to make sure that it is suitable for drinking before it can be released for human consumption. To sum it up, whether recycled water is used for potable or non-potable purposes, its benefits cannot be underestimated (Upadhyaya & Moore 2012).

Binnie, C, Kimber, M & Water, A 2009, Basic water treatment , 4th edn, Thomas Telford, London. Web.

Birks, R & Hills, S 2007, ‘Characterisation of indicator organisms and pathogens in domestic greywater for recycling’, Environmental monitoring and assessment , vol. 129, no. 3, pp. 61-69. Web.

Brown, R, Farrelly, M & Keath, N 2009, ‘Practitioner perceptions of social and institutional barriers to advancing a diverse water source approach in Australia’, Water Resources Development , vol. 25, no. 1, pp. 15-28. Web.

Burton, F, Leverenz, H, Tsuchihashi, R & Tchobanoglous, G 2007, Water reuse: issues, technologies, and applications , McGraw-Hill, New York. Web.

Dolnicar, S & Hurlimann, A 2011, ‘Water alternatives—who and what influences public acceptance?’, Journal of Public Affairs , vol. 11, no. 1, pp. 49-59. Web.

Friedler, E & Hadari, M 2006, ‘Economic feasibility of on-site greywater reuse in multi-storey buildings’, Desalination , vol. 190 no. 1, pp. 221-234. Web.

Hurlimann, A 2011, ‘Household use of and satisfaction with alternative water sources in Victoria Australia’, Journal of environmental management , vol. 92 no. 10, pp. 2691-2697. Web.

Hurlimann, A & McKay, J 2007, ‘Urban Australians using recycled water for domestic non-potable use—An evaluation of the attributes price, saltiness, colour and odour using conjoint analysis’, Journal of Environmental Management , vol. 83 no. 1, pp. 93-104. Web.

Jarwal, S 2006, Using recycled water in horticulture: a grower’s guide , Dept of Primary Industries, Melbourne. Web.

Kemp, B, Randle, M, Hurlimann, A & Dolnicar, S 2012, ‘Community acceptance of recycled water: can we inoculate the public against scare campaigns?’, Journal of Public Affairs , vol. 12, no.4, pp. 337-346. Web.

Mankad, A & Tapsuwan, S 2011, ‘Review of socio-economic drivers of community acceptance and adoption of decentralised water systems’, Journal of Environmental Management , vol. 92, no. 3, pp. 380-391. Web.

Pelusey, M & Pelusey, J 2006, Recycled Water , Macmillan Education AU, South Yarra, Victoria. Web.

Upadhyaya, J. K & Moore, G 2012, ‘Sustainability indicators for wastewater reuse systems and their application to two small systems in rural Victoria, Australia’, Canadian Journal of Civil Engineering , vol. 39, no. 6, pp. 674-688. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, November 1). Water Recycling. https://ivypanda.com/essays/water-recycling/

"Water Recycling." IvyPanda , 1 Nov. 2023, ivypanda.com/essays/water-recycling/.

IvyPanda . (2023) 'Water Recycling'. 1 November.

IvyPanda . 2023. "Water Recycling." November 1, 2023. https://ivypanda.com/essays/water-recycling/.

1. IvyPanda . "Water Recycling." November 1, 2023. https://ivypanda.com/essays/water-recycling/.

Bibliography

IvyPanda . "Water Recycling." November 1, 2023. https://ivypanda.com/essays/water-recycling/.

  • Direct and Indirect Potable Reuse
  • Potable Water Supply in the Gulf Region
  • Safety of recycled water for drinking
  • Treatment of Wastewater
  • Comparison of Secondary and Tertiary Waste Water Management
  • Recycling Greywater for Irrigation and Landscaping Applications
  • Recycled Water - Is It Safe for Drinking?
  • How a Desalination Plant Removes Salts, Minerals From Water
  • Water Scarcity as a Global Issue: Causes and Solutions
  • Pollution Problem: Sewage Spills in San Jose
  • Environmental Pollution in Canada
  • The Impact of Industrial Pollution on the Environment
  • Conservation Status of Poached Species in Africa: A Case of Rhinos, Elephants, and Gorillas
  • Culling/Protection of Rocky Mountain wolves
  • Ethanol as an Alternative Energy Source

Logo

Essay on Water Recycling

Students are often asked to write an essay on Water Recycling in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Water Recycling

What is water recycling.

Water recycling is the process of cleaning used water so it can be used again. This is important because clean water is limited, and we need to save as much as we can. By recycling water, we make sure we don’t waste it.

How Water is Recycled

The recycling process involves several steps. First, the dirty water is collected. Then, it goes through cleaning processes to remove any harmful stuff. After it’s clean, the water is safe to use again for things like watering plants or flushing toilets.

Benefits of Water Recycling

Recycling water helps the environment by saving our clean water sources. It also reduces the amount of waste water that ends up in rivers and oceans, which can harm animals and plants. Plus, it’s a smart way to make sure we have enough water for the future.

250 Words Essay on Water Recycling

Water recycling is the process of cleaning and reusing wastewater. Wastewater can come from many different places, including homes, businesses, and factories. It can be recycled for many different purposes, including irrigation, industrial uses, and even drinking water.

Why is Water Recycling Important?

Water recycling is important because it helps to conserve water. Water is a precious resource, and we need to do everything we can to protect it. Water recycling helps to reduce the amount of water that is used, which can help to prevent water shortages.

How is Water Recycled?

Water is recycled through a process called wastewater treatment. Wastewater treatment plants use a variety of processes to clean wastewater. These processes can include screening, sedimentation, and disinfection. Once the wastewater has been cleaned, it can be reused for many different purposes.

There are many benefits to water recycling. Water recycling can help to conserve water, reduce pollution, and save money. Water recycling can also help to create jobs and stimulate the economy.

Water recycling is a vital part of water conservation. By recycling water, we can help to protect this precious resource for future generations. Water recycling is also a cost-effective way to provide clean water for a variety of purposes.

500 Words Essay on Water Recycling

Why water recycling.

Water is one of the most essential elements for life on Earth. But, did you know that there is only a limited amount of freshwater available to us? In fact, over 97% of the water on Earth is salt water, which we can’t drink or use for agriculture. As the world’s population continues to grow, so does our demand for freshwater. This is why water recycling is becoming increasingly important.

Simply put, water recycling is the process of treating wastewater so that it can be reused. We can recycle water in many ways, but the most common method is called “secondary treatment.” In secondary treatment, wastewater is treated with bacteria to remove harmful bacteria and viruses. The treated water can then be used for irrigation, industrial purposes, or even to recharge groundwater supplies.

There are many benefits to water recycling. For example, recycling can help to conserve water, which is especially important in areas where water is scarce. Recycling can also help to reduce pollution, as it prevents wastewater from being discharged into rivers and streams. Additionally, recycled water can be used for a variety of purposes, which can help to reduce the demand for freshwater.

How Water Recycling Works

Water recycling involves several steps. First, wastewater is collected from homes and businesses. It is then taken to a wastewater treatment plant, where it is treated to remove harmful bacteria and viruses. The treated water can then be used for irrigation, industrial purposes, or even to recharge groundwater supplies.

Water recycling is a vital tool for conserving water and reducing pollution. As the world’s population continues to grow, so does our demand for freshwater. Water recycling helps to ensure that we have enough water to meet our needs, while also protecting the environment.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Water Quality
  • Essay on Water On Earth
  • Essay on Water Is Essential For Life

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Basic Information about Water Reuse

Basics of water reuse, types of water reuse, uses for recycled water, water reuse regulations in the united states.

Water reuse (also commonly known as water recycling or water reclamation) reclaims water from a variety of sources then treats and reuses it for beneficial purposes such as agriculture and irrigation, potable water supplies, groundwater replenishment, industrial processes, and environmental restoration. Water reuse can provide alternatives to existing water supplies and be used to enhance water security, sustainability, and resilience.

Water reuse can be defined as planned or unplanned. Unplanned water reuse refers to situations in which a source of water is substantially composed of previously-used water. A common example of unplanned water reuse occurs when communities draw their water supplies from rivers, such as the Colorado River and the Mississippi River, that receive treated wastewater discharges from communities upstream.

Planned water reuse refers to water systems designed with the goal of beneficially reusing a recycled water supply. Often, communities will seek to optimize their overall water use by reusing water to the extent possible within the community, before the water is reintroduced to the environment. Examples of planned reuse include agricultural and landscape irrigation, industrial process water, potable water supplies, and groundwater supply management.

Sources of water for potential reuse can include municipal wastewater, industry process and cooling water, stormwater, agriculture runoff and return flows, and produced water from natural resource extraction activities. These sources of water are adequately treated to meet “fit-for-purpose specifications” for a particular next use.  "Fit-for-purpose specifications” are the treatment requirements to bring water from a particular source to the quality needed, to ensure public health, environmental protection, or specific user needs. For example, reclaimed water for crop irrigation would need to be of sufficient quality to prevent harm to plants and soils, maintain food safety, and protect the health of farm workers. In uses where there is a greater human exposure water may require more treatment.

Graphic of conventional water usage and treatment activities, fit-for-purpose treatment and activities, and discharge and runoff activities. Also, how water may enter the system, be treated, and then used for different applications.

  • Irrigation for agriculture
  • Irrigation for landscaping such as parks, rights-of-ways, and golf courses
  • Municipal water supply
  • Process water for power plants, refineries, mills, and factories
  • Indoor uses such as toilet flushing
  • Dust control or surface cleaning of roads, construction sites, and other trafficked areas
  • Concrete mixing and other construction processes
  • Supplying artificial lakes and inland or coastal aquifers
  • Environmental restoration

EPA does not require or restrict any type of reuse. Generally, states maintain primary regulatory authority (i.e., primacy) in allocating and developing water resources. Some states have established programs to specifically address reuse, and some have incorporated water reuse into their existing programs. EPA, states, tribes, and local governments implement programs under the Safe Drinking Water Act and the Clean Water Act to protect the quality of drinking water source waters, community drinking water, and waterbodies like rivers and lakes. Together, the Safe Drinking Water Act and the Clean Water Act provide a foundation from which states can enable, regulate, and oversee water reuse as they deem appropriate.

  • Water Reuse Home
  • Basic Information
  • WRAP Online Platform
  • Recent and Upcoming Activities
  • Latest Quarterly Update
  • Resource Hub by End-Use
  • Water Reuse Information Library
  • REUSExplorer Tool

Published on Development and a Changing Climate

Scaling up water reuse: why recycling our wastewater makes sense, nico saporiti, elleanor robins, this page in:.

Aerial view of The Solid Contact Clarifier Tank in water treatment plant

In Durban, South Africa’s third largest city, an amount of wastewater equivalent to 13 Olympic-sized swimming pools has been treated and reused for industrial use by a paper mill and a local refinery every day since 2001.

A public-private partnership (PPP) between the city and a private environmental services company made this achievement possible. And it is a good example of how wastewater reuse is helping some cities address critical water shortages.

Wastewater reuse — recycling and reusing water from our sewerage systems — may prompt what is quite simply known as the “yuck” factor. People are naturally squeamish about the idea of reusing water that comes from our toilets, even though it’s actually quite common. Wastewater reuse has been around for thousands of years .

In London, a significant portion of the drinking water is indirectly recycled through the River Thames, the main water source for the British capital.  This is also being done in Windhoek, Namibia, where a direct potable reuse scheme has been operating since 1965.

In other places, such as India, Singapore, Mexico and Spain, reused water can provide a valuable water source for key industries, reducing the demand on limited water resources. Power plants, refineries, mills, and factories, including, for instance, those in the auto industry , can use reused water.  

The need is great. Not only do some 4.2 billion people around the world lack access to safely managed sanitation services, but 80 percent of global wastewater is not adequately treated. As much as 36 percent of the global population lives in water-scarce areas, and water demand is expected to rise to 55 percent by 2050 amid rapid urbanization.

At the same time, climate change is creating greater unpredictability and variability in the availability of fresh water. The United Nations estimates that 1.8 billion people will be living in countries or regions with absolute water scarcity by 2025, with Sub Saharan Africa counting the largest number of water-stressed countries of any region.

The COVID-19 pandemic has heightened awareness of both the extent and consequences of the lack of access to a reliable water supply, and has had an impact on the ability of water utilities to make necessary capital investments.  Countries affected by conflict and social fragility are especially vulnerable to water challenges and a deterioration of water services.

All of this matters because, as the World Bank says , gaps in access to water supply and sanitation are among the greatest risks to economic progress, poverty eradication and sustainable development.

Municipal waste and water is also an investment opportunity. An IFC analysis found that if cities in emerging markets focused on low-carbon water and waste as part of their post-COVID recovery, they would catalyze as much as $2 trillion in investments, and create over 23 million new jobs by 2030.

<blockquote> <h3>"An IFC analysis found that if cities in emerging markets focused on low-carbon water and waste as part of their post-COVID recovery, they would catalyze as much as $2 trillion in investments, and create over 23 million new jobs by 2030."</h3> </blockquote>  

The circular economy approach of reusing treated wastewater has potential benefits for millions of people.  It can provide a reliable water source for industrial, agricultural and — occasionally — potable uses, often at lower investment costs and with lower energy use than alternative sources, such as desalination or inter-basin water transfers.

IFC estimates that the cost of producing non-potable recycled water can be as low as $0.32 per cubic meter, and potable water $0.45, compared with more than $0.50 for desalination. 

Treatment of wastewater coupled with effluent reuse also has important direct climate benefits. In many cases, treating sewage water helps reduce greenhouse gas emissions, particularly methane. A well-designed wastewater project allows for better sludge management solutions, such as methane capture and energy generation, which help mitigate the greenhouse gas emissions coming from plants’ operations.

Moreover, water reuse can contribute to helping cities adapt to climate change by providing an additional and sustainable source of fresh water. 

<blockquote> <h3>"Water reuse can contribute to helping cities adapt to climate change by providing an additional and sustainable source of fresh water."</h3> </blockquote>  

The majority of desalination projects globally are privately developed and financed. Yet, as national and local governments in emerging markets continue to face significant gaps in meeting water and sanitation needs and budgetary constraints, well-structured PPPs in wastewater treatment and reuse are increasingly seen as a viable option.

Water reuse projects do come with particular challenges. For one thing, water is a local matter and no one project is like another. Water is also typically managed at a decentralized level, where local utilities may lack resources and capacity, while perceptions of high risk and cost of capital can also raise concerns.

IFC sees an enormous opportunity to assist in this area. Through our new World Bank Group Scaling ReWater initiative, IFC is helping address barriers to investment in wastewater treatment and reuse, while also taking into account affordability concerns. 

Scaling ReWater is a toolkit offering transaction advice, competitive financing solutions, a more straightforward tendering process and a holistic approach designed to mobilize hybrid financing from public and private sources. Our overall objective is to leverage private capital to accelerate the construction of wastewater treatment plants in emerging markets. The World Bank Group welcomes the opportunity to work with our partners to achieve this.

Nico Saporiti's headshot

Senior Investment Officer, IFC

Elleanor Robins headshot

Investment Officer, Municipal & Environmental Infrastructure, IFC

Join the Conversation

Thank you authors for this article. Treated wastewater reclamation is the only salvation to the water woes of our world. I have been associated with several wastewater reclamation projects in the industrial and municipal sector. Personally I have designed and executed projects for over 120 MLD wastewater reclamation in India. Whenever I speak to water managers I stress that all wastewater treatment plants must be designated as water sources across all sectors. To this end I seek a nudge from the World Bank and other global funding agencies to the federal governments and water industry managers.

Waste water treatment is useful for domestic use too. Fully treated can be used domestically. In India if political parties start using this, public acceptance will be high.

Water reuse is not a new technique or concept; knowledge on wastewater treatment and reuse has been accumulated along with the history of humankind. Land application of human waste is an old practice, which has undergone a number of development stages from ancient to contemporary times. Today, recycled water is used for nearly all purposes including potable reuse.

It is estimated that by 2050 the world population will increase by an additional 2 billion people (e.g., a city of about 145,000 every day). This population growth—coupled with industrialization and urbanization—will result in an increasing demand for water and will have serious consequences on the environment. Wastewater treatment and reuse will play a vital role in future urban planning.

Global Private Equity Partners created Clean Water Fund II in 2020, and we are currently involved with two different projects investing in most up-to-date technology.

I can not agree more

Congrats for a very well written article and for stating such interesting facts which show the importance that wastewater treatment has to our lives and economies starting from now...

I really like the content you share. This is the truth all we need to understand. Also as we know water is an important part of our life & water reuse can contribute to helping cities adapt to climate change by providing an additional and sustainable source of freshwater.

Thank you World Bank for the roll you play,mr Nico saporiti can you help us in uganda as uganda Government has totally failed to improve climate and water systems in the country. apostle samuel byakatonda. First Africa's Leader.

Unfortunately most non-potable treatments are not adequate to remove the 'forever chemicals' such as PFAS and other endocrine disruptors, as well as antibiotic resistant DNA. Until water reuse address our modern contaminants of Emerging Concern than much reuse may end up dispersing toxins rather than removing them at point source.

Water Reuse is generally drought proof. Reusing water has the potential to reduce the costs of water supply and wastewater treatment by industries and reduces pressure on water resources. Advances in treatment technologies now make it possible to recycle water of a quality which is fit for all purposes, industrial or potable.

Excellent article!

Thank you for talking about how water reuse can help with freshwater so much. I am moving to a new area and I want to get all my basic needs taken care of. I will find a good water treatment service in the area to assist.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 22 March 2021

Sustainable implementation of innovative technologies for water purification

  • Bart Van der Bruggen   ORCID: orcid.org/0000-0002-3921-7472 1 , 2  

Nature Reviews Chemistry volume  5 ,  pages 217–218 ( 2021 ) Cite this article

8845 Accesses

70 Citations

3 Altmetric

Metrics details

  • Environmental sciences
  • Scientific community

One of the sustainable development goals set by the United Nations General Assembly is to ensure the availability and sustainable management of water and sanitation for all. This requires investment in water purification technologies. World Water Day offers an opportunity to discuss whether such investment will help achieve this laudable goal.

Wastewater and seawater have long been considered as potential sources from which to produce freshwater. Several technologies have been developed over the past few decades aimed at their reuse and recycle, but unfortunately the treatment of both sources may have perfidious effects.

Of the approaches presently available, desalination seems to have the greatest potential, given that seawater is a nearly unlimited resource. However, desalination is an energy-intensive process. The state-of-the-art technology, seawater reverse osmosis (SWRO), has undergone huge improvements over the past five decades: the specific energy consumption of SWRO was reduced from 20 kWh m −3 in 1970 to only 2.5 kWh m −3 in 2010. It has been estimated that a further 0.69–0.79 kWh m −3 might be saved by a smart process integration with intrinsic heat recovery 1 , but desalination of typical seawater (with an average salt concentration of 35 g l −1 ) requires a minimum of 1.07 kWh m −3 , offering only a little room for improvement. This limit is the foundation of the water–energy nexus and prompts further research on renewable energy sources for desalination, which remain scarce. In a case study, Delgado-Torres and co-workers 2 used tidal and solar energy for desalination at a semi-arid location in Broome, Australia. Similar studies focus on desalination driven by wind energy, photovoltaics or solar thermal energy. Although such approaches to water desalination may be viable to supply clean water in small or spatially confined communities — as was demonstrated in the island of Aruba 3 — they offer very little for the water challenges of large cities such as Beijing, Cairo or Cape Town.

water recycling essay

In a cost–benefit analysis, wastewater recycling is more favourable than seawater desalination, because the former does not require the expensive separation of salts from water. This may seem surprising given that reverse osmosis is the key technology in both cases. The difference is that wastewater recycling would operate at much lower pressure. Such recycling has been practised for more than half a century in Windhoek, Namibia, and is accepted practice in water-scarce places such as Singapore 4 . Southern California is presently implementing a large-scale scheme to use recycled water as a potable source 5 and other countries and locations will surely follow. This trend pushes researchers to develop fouling-resistant, high-flux membranes for reverse osmosis and related membrane processes such as nano- or ultrafiltration. However, new challenges also arise. The production of (polymer) membranes for purification typically requires the use of polar aprotic solvents such as N,N -dimethylformamide (DMF), N,N -dimethylacetamide (DMA), 1,4-dioxane and tetrahydrofuran (THF). These solvents have a considerable environmental impact and significant effort is invested in their replacement with ‘greener’ solvents such as organic carbonates 6 or dimethyl sulfoxide (DMSO) 7 . Another limitation for present membrane technologies lies in the availability, processing and scale-up of materials for their manufacture. For example, two 2006 reports describe how incorporating carbon nanotubes into membranes affords permeabilities one to two orders of magnitude larger than those of conventional membranes. However, scaling up the synthesis of such membranes was not expected to be easy 8 — and, indeed, it has, so far, not happened. Since these reports emerged, there have been numerous studies on mixed-matrix membranes combining other nanostructures with polymeric matrices but, thus far, none has yet been applied on a large scale. Typically, good results are obtained in the laboratory, but the cost of producing the required nanostructures or issues associated with toxicity or leaching of nanoparticles from membranes have proven prohibitive for industrial use. Researchers need to place greater focus on the development of realistic membranes rather than just better membranes.

Closing the water cycle by either desalination or wastewater purification promises to provide virtually unlimited volumes of freshwater: in principle, it would enable an increase in water consumption by a factor equal to the inverse of the recycled fraction. However, we must be cognizant of unintended consequences. Water availability is one of the limiting factors for population growth and greater availability would certainly stimulate population growth. History has shown that humankind naturally makes use of available resources, sometimes with dramatic consequences, as exemplified by the agricultural and industrial revolutions 9 . A historical, sociological and demographic analysis by Harari shows that if water recycling is practised on a large scale, water consumption per capita may remain the same but our population will grow by the inverse of the recycled fraction 9 . This would then automatically lead to new challenges. A disenchanting example is the present SARS-CoV-2 virus: the scale of the outbreak would have been much more contained in a modest, local society without overpopulation. Water technologies may catalyse global growth more than any other technology because water is one of very few commodities that humankind cannot do without. This is of course not the case for industrialized countries, where water is not a limiting factor, but in most parts of the world it is. Harari was criticized for being unfamiliar with technologies, and, while this may be a fair criticism, warnings from other disciplines should not be summarily dismissed by technology developers.

In conclusion, the scope of water technologies may need to be reconsidered. There is no need for a major technological breakthrough in water recycling or desalination. What is really needed is for present technologies to be available to children growing up without access to clean water sources, as stated in the United Nations sustainable development goals . This will require dedicated, embedded actions towards maintaining the demographic status quo while respecting the basic human rights of all. The goals then are a useful tool to monitor progress but must be considered in context because the indicators that are used can result in tunnel vision 10 . Furthermore, lifestyle choices in terms of water — reduce, reuse and recycle — need to be thoroughly considered and be more than just a hollow slogan.

Park, K., Kim, J. B., Yang, D. R. & Hong, S. K. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. J. Membr. Sci. 595 , 117607 (2020).

Article   CAS   Google Scholar  

Delgado-Torres, A. M., García-Rodríguez, L. & Jiménez del Moral, M. Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV) - tidal range energy system. Desalination 477 , 114247 (2020).

Brendel, L. P. M., Shah, V. M., Groll, E. A. & Braun, J. E. A methodology for analyzing renewable energy opportunities for desalination and its application to Aruba. Desalination 493 , 114613 (2020).

Lafforgue, M. & Lenouvel, V. Closing the urban water loop: lessons from Singapore and Windhoek. Environ. Sci. Water Res. Technol. 1 , 622–631 (2015).

Article   Google Scholar  

Chalmers, R. B., Tremblay, M. & Soni, R. A new water source for Southern California: the regional recycled water program. J. AWWA 112 , 6–19 (2020).

Rasool, M. A., Pescarmona, P. P. & Vankelecom, I. F. J. Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustain. Chem. Eng. 7 , 13774–13785 (2019).

Evenepoel, N., Wen, S., Tsehaye, M. T. & Van der Bruggen, B. Potential of DMSO as greener solvent for PES ultra- and nanofiltration membrane preparation. J. Appl. Polym. Sci. 135 , 46494 (2018).

Sholl, D. S. & Johnson, J. K. Making high-flux membranes with carbon nanotubes. Science 312 , 1003–1004 (2006).

Harari, Y. N. Sapiens: A Brief History of Humankind (Harper Collins, 2015).

Weststrate, J., Dijkstra, G., Eshuis, J., Gianoli, A. & Rusca, M. The sustainable development goal on water and sanitation: learning from the millennium development goals. Soc. Indic. Res. 143 , 795–810 (2019).

Download references

Author information

Authors and affiliations.

Department of Chemical Engineering, KU Leuven, Leuven, Belgium

Bart Van der Bruggen

Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Bart Van der Bruggen .

Ethics declarations

Competing interests.

The author declares no competing interests.

Additional information

Related links.

United Nations sustainable development goals: https://sdgs.un.org/goals

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Van der Bruggen, B. Sustainable implementation of innovative technologies for water purification. Nat Rev Chem 5 , 217–218 (2021). https://doi.org/10.1038/s41570-021-00264-7

Download citation

Published : 22 March 2021

Issue Date : April 2021

DOI : https://doi.org/10.1038/s41570-021-00264-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Benefits and limitations of recycled water systems in the building sector: a review.

  • Zhonghao Chen
  • Pow-Seng Yap

Environmental Chemistry Letters (2024)

Nature-inspired wood-based solar evaporation system for efficient desalination and water purification

Journal of Materials Science (2023)

Superhydrophobicity-improved Ethanol-Water Separation

  • Linfeng Chen

Chemical Research in Chinese Universities (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

water recycling essay

Water Recycling

water recycling essay

Table of Contents

Introduction

The world is currently in dire need for sustainable water sources. Currently, it is estimated that over 1 billion people lack access to clean water (Rodriguez et.al, 2009). The growing water deficiency can be attributed to climate change that causes erratic weather, declining freshwater sources, and the abuse and misuse of water. Growing populations also serve to heighten the demand for water, especially in urban areas. A shortage of water on a large-scale would subsequently lead to food scarcity and a health crisis, with profound economic, social and environmental impacts. Recycling water, as opposed to utilizing fresh water is an efficient water-saving measure and part of sustainable water management.

water recycling essay

The Water Recycling Process

The water recycling process employs very basic chemical, biological, and physical technologies eradicate contaminants. Primary treatment involves the use physical water treatment systems. Secondary treatment involves the use biological processes to further treat water (Integrated Water Strategies, 2007).  The water treatment process is a very important one because of the high demand and use of water. The process involves the filtration of wastes from home and business use to be returned into the water grid. This process is vital since because much water is used daily for domestic use without considering the water from agriculture and industrial use. Thus, clean water is crucial, and since most of the water is salty, the recycling and reuse process is crucial to preserving a healthy future.

The first process of water recycling is filtration where it passes through a screen. The aim is to get rid of solid and very large objects such as stones and plastics that can compromise the cleaning equipment. Next, it passes through a grit chamber for removal of grit. Grit can comprise things like tiny rock particles and sediments. After the removal of grit, there is presence of other impurities such as particles. The particles are removed in a sedimentation tank. The heap of solids and particles that gather at the bottom of the sedimentation tank are called bio-solids previously sludge (Lenntech, 2008). This material can either be reused as fertilizers. This is the conclusion of the primary treatment.

water recycling essay

There is an increase in the demand for clean water in many cities. The primary treatment is not usually enough to recycle water into perfectly clean. Thus, the secondary treatment is crucial in this stage. This process is used to kill water microorganisms in the water. In this process, a trickling bed is fitted where water flows. The bed is usually made up of a heap of stones, but it can be other artificial material like as plastics. The bacterium builds on the stones and ingests organic matter in the water. This process removes 85% of the organic impurities. However, it is obsolete and is substituted with the activated sludge process. It involves water into air and sludge filled with bacteria. The water is transferred to another sedimentation tank, which chlorinated to completely kill 99% of the bacteria (Eckhardt, 2008).

Research Notes the Paper is Based

This paper is based on research process as noted by (Rodriguez et.al, 2009) of recycling effluent (sewage and wastewater) is designed to mirror what happens in nature but at an accelerated rate. The process is undertaken both biologically (by microorganisms and bacteria) and physically (through ultrafiltration and rapid sand filtration). Wastewater that is intended for drinking goes through advanced purification processes to ensure it is free of contaminants. The specific process of wastewater treatment differs from plant to plant but in order to fully purify wastewater a number of barrier treatments are used. These include ozonation, dissolved air flotation, chlorination, activated carbon filtration, and enhanced coagulation (Rodriguez et.al, 2009). The wastewater is also taken through modern technologies in the process of purification such as reverse osmosis where water particles are separated from impurities, and ultraviolet disinfection which imitates the natural ultraviolet light that purifies water. To fully understand how recycled sewage water can be part of our daily lives, a case study was analyzed where the process has been successfully applied. Namibia, a small landlocked country in the south of Africa with a population of just over 2 million, was actually the first country to implement recycled sewage water for consumption in 1968 in the outskirts of its capital city Windhoek (Gross, 2016). For the past 50 years, Namibia has taken sewage and turned it into drinkable water, long before any other nation had fathomed such a concept. Today, the plant processes over 40,000 cubic meters of sewage a day a lot more than it was initially intended for. Apart from the strong pungent smell that the waste treatment plant emits, it has no other visible social or environmental bearings on the surrounding area (Gross, 2016).

water recycling essay

In conclusion, the process of treating water is an important one for everyone. People that lack clean water are vulnerable to waterborne diseases. Clean water is a necessity to maintaining good health. The complex process of recycling is crucial to maintain a clean and fresh supply of water to households, agriculture, and industries.

  • Eckhardt, G. (2008). “Water Recycling” The Edwards Aquifer Website.
  • Gross, D. (2016). A. “Recycling sewage into drinking water is no big deal. They’ve been doing it in Namibia for 50 years.” Public Radio International – Science, Tech & Environment. Website. 31 March 2017.
  • Integrated Water Strategies. (2007). “Wastewater Basics” Design for Nature by Nature.
  • Lenntech Water Recycling. (2008). “The Re-use of Process and Waste Water” Lenntech Water Recycling.
  • Leong, C. (2016). “The Role of Emotions in Drinking Recycled Water.” Water, 8(11) 548.
  • Rodriguez, Clemencia, et al. (2009). “Indirect Potable Reuse: A Sustainable Water Supply Alternative.” Sustainability: Environmental Studies and Public Health. 1174-1203.
  • ♻️ Recycling
  • Air Pollution
  • Animal Rights
  • Animal Testing
  • Climate Change
  • Deforestation
  • Endangered Species
  • Environmental Issues
  • Global Warming

water recycling essay

Wastewater Treatment and Reuse: a Review of its Applications and Health Implications

  • Open access
  • Published: 10 May 2021
  • Volume 232 , article number  208 , ( 2021 )

Cite this article

You have full access to this open access article

  • Kavindra Kumar Kesari   ORCID: orcid.org/0000-0003-3622-9555 1   na1 ,
  • Ramendra Soni 2   na1 ,
  • Qazi Mohammad Sajid Jamal 3 ,
  • Pooja Tripathi 4 ,
  • Jonathan A. Lal 2 ,
  • Niraj Kumar Jha 5 ,
  • Mohammed Haris Siddiqui 6 ,
  • Pradeep Kumar 7 ,
  • Vijay Tripathi 2 &
  • Janne Ruokolainen 1  

45k Accesses

111 Citations

4 Altmetric

Explore all metrics

Water scarcity is one of the major problems in the world and millions of people have no access to freshwater. Untreated wastewater is widely used for agriculture in many countries. This is one of the world-leading serious environmental and public health concerns. Instead of using untreated wastewater, treated wastewater has been found more applicable and ecofriendly option. Moreover, environmental toxicity due to solid waste exposures is also one of the leading health concerns. Therefore, intending to combat the problems associated with the use of untreated wastewater, we propose in this review a multidisciplinary approach to handle wastewater as a potential resource for use in agriculture. We propose a model showing the efficient methods for wastewater treatment and the utilization of solid wastes in fertilizers. The study also points out the associated health concern for farmers, who are working in wastewater-irrigated fields along with the harmful effects of untreated wastewater. The consumption of crop irrigated by wastewater has leading health implications also discussed in this review paper. This review further reveals that our current understanding of the wastewater treatment and use in agriculture with addressing advancements in treatment methods has great future possibilities.

Similar content being viewed by others

water recycling essay

Municipal solid waste management and landfilling technologies: a review

Sonil Nanda & Franco Berruti

Drinking water contamination and treatment techniques

S. Sharma & A. Bhattacharya

water recycling essay

Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review

Xiaoxuan Peng, Yushan Jiang, … Pow-Seng Yap

Avoid common mistakes on your manuscript.

1 Introduction

Rapidly depleting and elevating the level of freshwater demand, though wastewater reclamation or reuse is one of the most important necessities of the current scenario. Total water consumption worldwide for agriculture accounts 92% (Clemmens et al., 2008 ; Hoekstra & Mekonnen, 2012 ; Tanji & Kielen, 2002 ). Out of which about 70% of freshwater is used for irrigation (WRI, 2020 ), which comes from the rivers and underground water sources (Pedrero et al., 2010 ). The statistics shows serious concern for the countries facing water crisis. Shen et al. ( 2014 ) reported that 40% of the global population is situated in heavy water–stressed basins, which represents the water crisis for irrigation. Therefore, wastewater reuse in agriculture is an ideal resource to replace freshwater use in agriculture (Contreras et al., 2017 ). Treated wastewater is generally applied for non-potable purposes, like agriculture, land, irrigation, groundwater recharge, golf course irrigation, vehicle washing, toilet flushes, firefighting, and building construction activities. It can also be used for cooling purposes in thermal power plants (Katsoyiannis et al., 2017 ; Mohsen, 2004 ; Smith, 1995 ; Yang et al., 2017 ). At global level, treated wastewater irrigation supports agricultural yield and the livelihoods of millions of smallholder farmers (Sato et al., 2013 ). Global reuse of treated wastewater for agricultural purposes shows wide variability ranging from 1.5 to 6.6% (Sato et al., 2013 ; Ungureanu et al., 2018 ). More than 10% of the global population consumes agriculture-based products, which are cultivated by wastewater irrigation (WHO, 2006 ). Treated wastewater reuse has experienced very rapid growth and the volumes have been increased ~10 to 29% per year in Europe, the USA, China, and up to 41% in Australia (Aziz & Farissi, 2014 ). China stands out as the leading country in Asia for the reuse of wastewater with an estimated 1.3 M ha area including Vietnam, India, and Pakistan (Zhang & Shen, 2017 ). Presently, it has been estimated that, only 37.6% of the urban wastewater in India is getting treated (Singh et al., 2019 ). By utilizing 90% of reclaimed water, Israel is the largest user of treated wastewater for agriculture land irrigation (Angelakis & Snyder, 2015 ). The detail information related to the utilization of freshwater and treated wastewater is compiled in Table 1 .

Many low-income countries in Africa, Asia, and Latin America use untreated wastewater as a source of irrigation (Jiménez & Asano, 2008 ). On the other hand, middle-income countries, such as Tunisia, Jordan, and Saudi Arabia, use treated wastewater for irrigation (Al-Nakshabandi et al., 1997 ; Balkhair, 2016a ; Balkhair, 2016b ; Qadir et al., 2010 ; Sato et al., 2013 ).

Domestic water and treated wastewater contains various type of nutrients such as phosphorus, nitrogen, potassium, and sulfur, but the major amount of nitrogen and phosphorous available in wastewater can be easily accumulated by the plants, that’s why it is widely used for the irrigation (Drechsel et al., 2010 ; Duncan, 2009 ; Poustie et al., 2020 ; Sengupta et al., 2015 ). The rich availability of nutrients in reclaimed wastewater reduces the use of fertilizers, increases crop productivity, improves soil fertility, and at the same time, it may also decrease the cost of crop production (Chen et al., 2013 a; Jeong et al., 2016 ). The data of high nutritional values in treated wastewater is shown in Fig. 1 .

figure 1

Nutrient concentrations (mg/L) of freshwater/wastewater (Yadav et al., 2002 )

Wastewater reuse for crop irrigation showed several health concerns (Ungureanu et al., 2020 ). Irrigation with the industrial wastewater either directly or mixing with domestic water showed higher risk (Chen et al., 2013). Risk factors are higher due to heavy metal and pathogens contamination because heavy metals are non-biodegradable and have a long biological half-life (Chaoua et al., 2019 ; WHO, 2006 ). It contains several toxic elements, i.e., Cu, Cr, Mn, Fe, Pb, Zn, and Ni (Mahfooz et al., 2020 ). These heavy metals accumulate in topsoil (at a depth of 20 cm) and sourcing through plant roots; they enter the human and animal body through leafy vegetables consumption and inhalation of contaminated soils (Mahmood et al., 2014 ). Therefore, health risk assessment of such wastewater irrigation is important especially in adults (Mehmood et al., 2019 ; Njuguna et al., 2019 ; Xiao et al., 2017 ). For this, an advanced wastewater treatment method should be applied before release of wastewater in the river, agriculture land, and soils. Therefore, this review also proposed an advance wastewater treatment model, which has been tasted partially at laboratory scale by Kesari and Behari ( 2008 ), Kesari et al. ( 2011a , b ), and Kumar et al. ( 2010 ).

For a decade, reuse of wastewater has also become one of the global health concerns linking to public health and the environment (Dang et al., 2019 ; Narain et al., 2020 ). The World Health Organization (WHO) drafted guidelines in 1973 to protect the public health by facilitating the conditions for the use of wastewater and excreta in agriculture and aquaculture (WHO, 1973 ). Later in 2005, the initial guidelines were drafted in the absence of epidemiological studies with minimal risk approach (Carr, 2005 ). Although, Adegoke et al. ( 2018 ) reviewed the epidemiological shreds of evidence and health risks associated with reuse of wastewater for irrigation. Wastewater or graywater reuse has adverse health risks associated with microbial hazards (i.e., infectious pathogens) and chemicals or pharmaceuticals exposures (Adegoke et al., 2016 ; Adegoke et al., 2017 ; Busgang et al., 2018 ; Marcussen et al., 2007 ; Panthi et al., 2019 ). Researchers have reported that the exposure to wastewater may cause infectious (helminth infection) diseases, which are linked to anemia and impaired physical and cognitive development (Amoah et al., 2018 ; Bos et al., 2010 ; Pham-Duc et al., 2014 ; WHO, 2006 ).

Owing to an increasing population and a growing imbalance in the demand and supply of water, the use of wastewater has been expected to increase in the coming years (World Bank, 2010 ). The use of treated wastewater in developed nations follows strict rules and regulations. However, the direct use of untreated wastewater without any sound regulatory policies is evident in developing nations, which leads to serious environmental and public health concerns (Dickin et al., 2016 ). Because of these issues, we present in this review, a brief discussion on the risk associated with the untreated wastewater exposures and advanced methods for its treatment, reuse possibilities of the treated wastewater in agriculture.

2 Environmental Toxicity of Untreated Wastewater

Treated wastewater carries larger applicability such as irrigation, groundwater recharge, toilet flushing, and firefighting. Municipal wastewater treatment plants (WWTPs) are the major collection point for the different toxic elements, pathogenic microorganisms, and heavy metals. It collects wastewater from divergent sources like household sewage, industrial, clinical or hospital wastewater, and urban runoff (Soni et al., 2020 ). Alghobar et al. ( 2014 ) reported that grass and crops irrigated with sewage and treated wastewater are rich in heavy metals in comparison with groundwater (GW) irrigation. Although, heavy metals classified as toxic elements and listed as cadmium, lead, mercury, copper, and iron. An exceeding dose or exposures of these heavy metals could be hazardous for health (Duan et al., 2017 ) and ecological risks (Tytła, 2019 ). The major sources of these heavy metals come from drinking water. This might be due to the release of wastewater into river or through soil contamination reaches to ground water. Table 2 presenting the permissible limits of heavy metals presented in drinking water and its impact on human health after an exceeding the amount in drinking water, along with the route of exposure of heavy metals to human body.

Direct release in river or reuse of wastewater for irrigation purposes may create short-term implications like heavy metal and microbial contamination and pathogenic interaction in soil and crops. It has also long-term influence like soil salinity, which grows with regular use of untreated wastewater (Smith, 1995 ). Improper use of wastewater for irrigation makes it unsafe and environment threatening. Irrigation with several different types of wastewater, i.e., industrial effluents, municipal and agricultural wastewaters, and sewage liquid sludge transfers the heavy metals to the soil, which leads to accumulation in crops due to improper practices. This has been identified as a significant route of heavy metals into aquatic resources (Agoro et al., 2020 ). Hussain et al. ( 2019 ) investigated the concentration of heavy metals (except for Cd) was higher in the soil irrigated with treated wastewater (large-scale sewage treatment plant) than the normal ground water, also reported by Khaskhoussy et al. ( 2015 ).

In other words, irrigation with wastewater mitigates the quality of crops and enhances health risks. Excess amount of copper causes anemia, liver and kidney damage, vomiting, headache, and nausea in children (Bent & Bohm, 1995 ; Madsen et al., 1990 ; Salem et al., 2000 ). A higher concentration of arsenic may lead to bone and kidney cancer (Jarup, 2003 ) and results in osteopenia or osteoporosis (Puzas et al., 2004 ). Cadmium gives rise to musculoskeletal diseases (Fukushima et al., 1970 ), whereas mercury directly affects the nervous system (Azevedo et al., 2014 ).

3 Spread of Antibiotic Resistance

Currently, antibiotics are highly used for human disease treatment; however, uses in poultries, animal husbandries, biochemical industries, and agriculture are common practices these days. Extensive use and/or misuse of antibiotics have given rise to multi-resistant bacteria, which carry multiple resistance genes (Icgen & Yilmaz, 2014 ; Lv et al., 2015 ; Tripathi & Tripathi, 2017 ; Xu et al., 2017 ). These multidrug-resistant bacteria discharged through the sewage network and get collected into the wastewater treatment plants. Therefore, it can be inferred that the WWTPs serve as the hotspot of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Though, these antibiotic-resistant bacteria can be disseminated to the different bacterial species through the mobile genetic elements and horizontal gene transfer (Gupta et al., 2018 ). Previous studies indicated that certain pathogens might survive in wastewater, even during and after the treatment processes, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) (Börjesson et al., 2009 ; Caplin et al., 2008 ). The use of treated wastewater in irrigation provides favorable conditions for the growth and persistence of total coliforms and fecal coliforms (Akponikpe et al., 2011 ; Sacks & Bernstein, 2011 ). Furthermore, few studies have also reported the presence of various bacterial pathogens, such as Clostridium , Salmonella , Streptococci , Viruses, Protozoa, and Helminths in crops irrigated with treated wastewater (Carey et al., 2004 ; Mañas et al., 2009 ; Samie et al., 2009 ). Goldstein ( 2013 ) investigated the survival of ARB in secondary treated wastewater and proved that it causes serious health risks to the individuals, who are exposed to reclaimed water. The U.S. Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) have already declared the ARBs as the imminent hazard to human health. According to the list published by WHO, regarding the development of new antimicrobial agents, the ESKAPE ( Enterococcus faecium , S. aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens were designated to be “priority status” as their occurrence in the food chain is considered as the potential and major threat for the human health (Tacconelli et al., 2018 ).

These ESKAPE pathogens have acquired the multi drug resistance mechanisms against oxazolidinones, lipopeptides, macrolides, fluoroquinolones, tetracyclines, β-lactams, β-lactam–β-lactamase inhibitor combinations, and even those antibiotics that are considered as the last line of defense, including carbapenems and glycopeptides (Giddins et al., 2017 ; Herc et al., 2017 ; Iguchi et al., 2016 ; Naylor et al., 2018 ; Zaman et al., 2017 ), by the means of genetic mutation and mobile genetic elements. These cluster of ESKAPE pathogens are mainly responsible for lethal nosocomial infections (Founou et al., 2017 ; Santajit & Indrawattana, 2016 ).

Due to the wide application of antibiotics in animal husbandry and inefficient capability of wastewater treatment plants, the multidrug-resistant bacteria such as tetracyclines, sulfonamides, β-lactam, aminoglycoside, colistin, and vancomycin in major are disseminated in the receiving water bodies, which ultimately results in the accumulation of ARGs in the irrigated crops (He et al., 2020 ).

4 Toxic Contaminations in Wastewater Impacting Human Health

The release of untreated wastewater into the river may pose serious health implications (König et al., 2017 ; Odigie, 2014 ; Westcot, 1997 ). It has been already discussed about the household and municipal sewage which contains a major amount of organic materials and pathogenic microorganisms and these infectious microorganisms are capable of spreading various diseases like typhoid, dysentery, diarrhea, vomiting, and malabsorption (Jia & Zhang, 2020 ; Numberger et al., 2019 ; Soni et al., 2020 ). Additionally, pharmaceutical industries also play a key role in the regulation and discharge of biologically toxic agents. The untreated wastewater also contains a group of contaminants, which are toxic to humans. These toxic contaminations have been classified into two major groups: (i) chemical contamination and (ii) microbial contamination.

4.1 Chemical Contamination

Mostly, various types of chemical compounds released from industries, tanneries, workshops, irrigated lands, and household wastewaters are responsible for several diseases. These contaminants can be organic materials, hydrocarbons, volatile compounds, pesticides, and heavy metals. Exposure to such contaminants may cause infectious diseases like chronic dermatoses and skin cancer, lung infection, and eye irritation. Most of them are non-biodegradable and intractable. Therefore, they can persist in the water bodies for a very long period and could be easily accumulated in our food chain system. Several pharmaceutical personal care products (PPCPs) and surfactants are available that may contain toxic compounds like nonylphenol, estrone, estradiol, and ethinylestradiol. These compounds are endocrine-disrupting chemicals (Bolong et al., 2009 ), and the existence of these compounds in the human body even in the trace amounts can be highly hazardous. Also, the occurrence of perfluorinated compounds (PFCs) in wastewater, which is toxic in nature, has been significantly reported worldwide (Templeton et al., 2009 ). Furthermore, PFCs cause severe health menaces like pre-eclampsia, birth defects, reduced human fertility (Webster, 2010 ), immunotoxicity (Dewitt et al., 2012 ), neurotoxicity (Lee & Viberg, 2013 ), and carcinogenesis (Bonefeld-Jorgensen et al., 2011 ).

4.2 Microbial Contamination

Researchers have reported serious health risks associated with the microbial contaminants in untreated wastewater. The diverse group of microorganisms causes severe health implications like campylobacteriosis, diarrhea, encephalitis, typhoid, giardiasis, hepatitis A, poliomyelitis, salmonellosis, and gastroenteritis (ISDH, 2009 ; Okoh et al., 2010 ). Few bacterial species like P. aeruginosa , Salmonella typhimurium , Vibrio cholerae , G. intestinales , Legionella spp., E. coli , Shigella sonnei have been reported for the spreading of waterborne diseases, and acute illness in human being (Craun et al., 2006 ; Craun et al., 2010 ). These aforementioned microorganisms may release in the environment from municipal sewage water network, animal husbandries, or hospitals and enter the food chain via public water supply systems.

5 Wastewater Impact on Agriculture

The agriculture sector is well known for the largest user of water, accounting for nearly 70% of global water usage (Winpenny et al., 2010 ). The fact that an estimated 20 million hectares worldwide are irrigated with wastewater suggests a major source for irrigation (Ecosse, 2001 ). However, maximum wastewater that is used for irrigation is untreated (Jiménez & Asano, 2008 ; Scott et al., 2004 ). Mostly in developing countries, partially treated or untreated wastewater is used for irrigation purpose (Scott et al., 2009 ). Untreated wastewater often contains a large range of chemical contaminants from waste sites, chemical wastes from industrial discharges, heavy metals, fertilizers, textile, leather, paper, sewage waste, food processing waste, and pesticides. World Health Organization (WHO) has warned significant health implications due to the direct use of wastewater for irrigation purposes (WHO, 2006 ). These contaminants pose health risks to communities (farmers, agricultural workers, their families, and the consumers of wastewater-irrigated crops) living in the proximity of wastewater sources and areas irrigated with untreated wastewater (Qadir et al., 2010 ). Wastewater also contains a wide variety of organic compounds. Some of them are toxic or cancer-causing and have harmful effects on an embryo (Jarup, 2003 ; Shakir et al., 2016 ). The pathway of untreated wastewater used in irrigation and associated health effects are shown in Fig. 2 .

figure 2

Exposure pathway representing serious health concerns from wastewater-irrigated crops

Alternatively, in developing countries, due to the limited availability of treatment facilities, untreated wastewater is discharged into the existing waterbodies (Qadir et al., 2010 ). The direct use of wastewater in agriculture or irrigation obstructs the growth of natural plants and grasses, which in turn causes the loss of biodiversity. Shuval et al. ( 1985 ) reported one of the earliest evidences connecting to agricultural wastewater reuse with the occurrence of diseases. Application of untreated wastewater in irrigation increases soil salinity, land sealing followed by sodium accumulation, which results in soil erosion. Increased soil salinity and sodium accumulation deteriorates the soil and decreases the soil permeability, which inhibits the nutrients intake of crops from the soil. These causes have been considered the long-term impact of wastewater reuse in agriculture (Halliwell et al., 2001 ). Moreover, wastewater contaminated soils are a major source of intestinal parasites (helminths—nematodes and tapeworms) that are transmitted through the fecal–oral route (Toze, 1997 ). Already known, the helminth infections are linked to blood deficiency and behavioral or cognitive development (Bos et al., 2010 ). One of the major sources of helminth infections around the world is the use of raw or partially treated sewage effluent and sludge for the irrigation of food crops (WHO, 1989 ). Wastewater-irrigated crops contain heavy metal contamination, which originates from mining, foundries, and metal-based industries (Fazeli et al., 1998 ). Exposure to heavy metals including arsenic, cadmium, lead, and mercury in wastewater-irrigated crops is a cause for various health problems. For example, the consumption of high amounts of cadmium causes osteoporosis in humans (Dickin et al., 2016 ). The uptake of heavy metals by the rice crop irrigated with untreated effluent from a paper mill has been reported to cause serious health concerns (Fazeli et al., 1998 ). Irrigating rice paddies with highly contaminated water containing heavy metals leads to the outbreak of Itai-itai disease in Japan (Jarup, 2003 ).

Owing to these widespread health risks, the WHO published the third edition of its guidelines for the safe use of wastewater in irrigating crops (WHO, 2006 ) and made recommendations for threshold contaminant levels in wastewater. The quality of wastewater for agricultural reuse have been classified based on the availability of nutrients, trace elements, microorganisms, and chemicals contamination levels. The level of contamination differs widely depending on the type of source, household sewage, pharmaceutical, chemical, paper, or textile industries effluents. The standard measures of water quality for irrigation are internationally reported (CCREM, 1987 ; FAO, 1985 ; FEPA, 1991 ; US EPA, 2004 , 2012 ; WHO, 2006 ), where the recommended levels of trace elements, metals, COD, BOD, nitrogen, and phosphorus are set at certain limits. Researchers reviewed the status of wastewater reuse for agriculture, based on its standards and guidelines for water quality (Angelakis et al., 1999 ; Brissaud, 2008 ; Kalavrouziotis et al., 2015 ). Based on these recommendations and guidelines, it is evident that greater awareness is required for the treatment of wastewater safely.

6 Wastewater Treatment Techniques

6.1 primary treatment.

This initial step is designed to remove gross, suspended and floating solids from raw wastewater. It includes screening to trap solid objects and sedimentation by gravity to remove suspended solids. This physical solid/liquid separation is a mechanical process, although chemicals can be used sometimes to accelerate the sedimentation process. This phase of the treatment reduces the BOD of the incoming wastewater by 20–30% and the total suspended solids by nearly 50–60%.

6.2 Secondary (Biological) Treatment

This stage helps eliminate the dissolved organic matter that escapes primary treatment. Microbes consume the organic matter as food, and converting it to carbondioxide, water, and energy for their own growth. Additional settling to remove more of the suspended solids then follows the biological process. Nearly 85% of the suspended solids and biological oxygen demand (BOD) can be removed with secondary treatment. This process also removes carbonaceous pollutants that settle down in the secondary settling tank, thus separating the biological sludge from the clear water. This sludge can be fed as a co-substrate with other wastes in a biogas plant to obtain biogas, a mixture of CH 4 and CO 2 . It generates heat and electricity for further energy distribution. The leftover, clear water is then processed for nitrification or denitrification for the removal of carbon and nitrogen. Furthermore, the water is passed through a sedimentation basin for treatment with chlorine. At this stage, the water may still contain several types of microbial, chemical, and metal contaminations. Therefore, to make the water reusable, e.g., for irrigation, it further needs to pass through filtration and then into a disinfection tank. Here, sodium hypochlorite is used to disinfect the wastewater. After this process, the treated water is considered safe to use for irrigation purposes. Solid wastes generated during primary and secondary treatment processes are processed further in the gravity-thickening tank under a continuous supply of air. The solid waste is then passed into a centrifuge dewatering tank and finally to a lime stabilization tank. Treated solid waste is obtained at this stage and it can be processed further for several uses such as landfilling, fertilizers and as a building.

Other than the activated sludge process of wastewater treatment, there are several other methods developed and being used in full-scale reactors such as ponds (aerobic, anaerobic, facultative, and maturation), trickling filters, anaerobic treatments like up-flow anaerobic sludge blanket (UASB) reactors, artificial wetlands, microbial fuel cells, and methanogenic reactors.

UASB reactors are being applied for wastewater treatment from a very long period. Behling et al. ( 1996 ) examined the performance of the UASB reactor without any external heat supply. In their study, the COD loading rate was maintained at 1.21 kg COD/m 3 /day, after 200 days of trial. They achieved an average of 85% of COD removal. Von-Sperling and Chernicharo ( 2005 ) presented a combined model consisted of an Up-flow Anaerobic Sludge Blanket-Activated Sludge reactor (UASB–AS system), using the low strength domestic wastewater with a BOD 5 amounting to 340 mg/l. Outcomes of their experiment have shown a 60% reduction in sludge construction and a 40% reduction in aeration energy consumption. In another experiment, Rizvi et al. ( 2015 ) seeded UASB reactor with cow manure dung to treat domestic wastewater; they observed 81%, 75%, and 76% reduction in COD, TSS, and total sulfate removal, respectively, in their results.

6.3 Tertiary or Advanced Treatment Processes

The tertiary treatment process is employed when specific constituents, substances, or contaminants cannot be completely removed after the secondary treatment process. The tertiary treatment processes, therefore, ensure that nearly 99% of all impurities are removed from wastewater. To make the treated water safe for drinking purposes, water is treated individually or in combination with advanced methods like the US (ultrasonication), UV (ultraviolet light treatment), and O 3 (exposure to ozone). This process helps to remove bacteria and heavy metal contaminations remaining in the treated water. For the purpose, the secondarily treated water is first made to undergo ultrasonication and it is subsequently exposed to UV light and passed through an ozone chamber for the complete removal of contaminations. The possible mechanisms by which cells are rendered inviable during the US include free-radical attack and physical disruption of cell membranes (Phull et al., 1997 ; Scherba et al., 1991 ). The combined treatment of US + UV + O 3 produces free radicals, which are attached to cell membranes of the biological contaminants. Once the cell membrane is sheared, chemical oxidants can enter the cell and attack internal structures. Thus, the US alone or in combination facilitates the deagglomeration of microorganisms and increases the efficiency of other chemical disinfectants (Hua & Thompson, 2000 ; Kesari et al., 2011a , b ; Petrier et al., 1992 ; Phull et al., 1997 ; Scherba et al., 1991 ). A combined treatment method was also considered by Pesoutova et al. ( 2011 ) and reported a very effective method for textile wastewater treatment. The effectiveness of ultrasound application as a pre-treatment step in combination with ultraviolet rays (Blume & Neis, 2004 ; Naddeo et al., 2009 ), or also compared it with various other combinations of both ultrasound and UV radiation with TiO 2 photocatalysis (Paleologou et al., 2007 ), and ozone (Jyoti & Pandit, 2004 ) to optimize wastewater disinfection process.

An important aspect of our wastewater treatment model (Fig. 3 ) is that at each step of the treatment process, we recommend the measurement of the quality of treated water. After ensuring that the proper purification standards are met, the treated water can be made available for irrigation, drinking or other domestic uses.

figure 3

A wastewater treatment schematic highlighting the various methods that result in a progressively improved quality of the wastewater from the source to the intended use of the treated wastewater for irrigation purposes

6.4 Nanotechnology as Tertiary Treatment of Wastewater Converting Drinking Water Alike

Considering the emerging trends of nanotechnology, nanofillers can be used as a viable method for the tertiary treatment of wastewater. Due to the very small pore size, 1–5-nm nanofillers may eliminate the organic–inorganic pollutants, heavy metals, as well as pathogenic microorganisms and pharmaceutically active compounds (PhACs) (Mohammad et al., 2015 ; Vergili, 2013 ). Over the recent years, nanofillers have been largely accepted in the textile industry for the treatment of pulp bleaching pharmaceutical industry, dairy industry, microbial elimination, and removal of heavy metals from wastewater (Abdel-Fatah, 2018 ). Srivastava et al. ( 2004 ) synthesized very efficient and reusable water filters from carbon nanotubes, which exhibited effective elimination of bacterial pathogens ( E. coli and S. aureus ), and Poliovirus sabin-1 from wastewater.

Nanofiltration requires lower operating pressure and lesser energy consumption in comparison of RO and higher rejection of organic compounds compared to UF. Therefore, it can be applied as the tertiary treatment of wastewater (Abdel-Fatah, 2018 ). Apart from nanofilters, there are various kinds of nanoparticles like metal nanoparticles, metal oxide nanoparticles, carbon nanotubes, graphene nanosheets, and polymer-based nanosorbents, which may play a different role in wastewater treatment based on their properties. Kocabas et al. ( 2012 ) analyzed the potential of different metal oxide nanoparticles and observed that nanopowders of TiO 2 , FeO 3 , ZnO 2 , and NiO can exhibit the exceeding amount of removal of arsenate from wastewater. Cadmium contamination in wastewater, which poses a serious health risk, can be overcome by using ZnO nanoparticles (Kumar & Chawla, 2014 ). Latterly, Vélez et al. ( 2016 ) investigated that the 70% removal of mercury from wastewater through iron oxide nanoparticles successfully performed. Sheet et al. ( 2014 ) used graphite oxide nanoparticles for the removal of nickel from wastewater. An exceeding amount of copper causes liver cirrhosis, anemia, liver, and kidney damage, which can be removed by carbon nanotubes, pyromellitic acid dianhydride (PMDA) and phenyl aminomethyl trimethoxysilane (PAMTMS) (Liu et al., 2010 ).

Nanomaterials are efficiently being used for microbial purification from wastewater. Carbon nanotubes (CNTs) are broadly applied for the treatment of wastewater contaminated with E. coli , Salmonella , and a wide range of microorganisms (Akasaka & Watari, 2009 ). In addition, silver nanoparticles reveal very effective results against the microorganisms present in wastewater. Hence, it is extensively being used for microbial elimination from wastewater (Inoue et al., 2002 ). Moreover, CNTs exhibit high binding affinity to bacterial cells and possess magnetic properties (Pan & Xing, 2008 ). Melanta ( 2008 ) confirmed and recommended the applicability of CNTs for the removal of E. coli contamination from wastewater. Mostafaii et al. ( 2017 ) suggested that the ZnO nanoparticles could be the potential antibacterial agent for the removal of total coliform bacteria from municipal wastewater. Apart from the previously mentioned, applicability of the nanotechnology, the related drawbacks and challenges cannot be neglected. Most of the nanoengineered techniques are currently either in research scale or pilot scale performing well (Gehrke et al., 2015 ). Nevertheless, as discussed above, nanotechnology and nanomaterials exhibit exceptional properties for the removal of contaminants and purification of water. Therefore, it can be adapted as the prominent solution for the wastewater treatment (Zekić et al., 2018 ) and further use for drinking purposes.

6.5 Wastewater Treatment by Using Plant Species

Some of the naturally growing plants can be a potential source for wastewater treatment as they remove pollutants and contaminants by utilizing them as a nutrient source (Zimmels et al., 2004 ). Application of plant species in wastewater treatment may be cost-effective, energy-saving, and provides ease of operation. At the same time, it can be used as in situ, where the wastewater is being produced (Vogelmann et al., 2016 ). Nizam et al. ( 2020 ) analyzed the phytoremediation efficiency of five plant species ( Centella asiatica , Ipomoea aquatica , Salvinia molesta , Eichhornia crassipes , and Pistia stratiotes ) and achieved the drastic decrease in the amount of three pollutants viz. total suspended solids (TSS), ammoniacal nitrogen (NH 3 -N), and phosphate levels . All the five species found to be efficient removal of the level of 63.9-98% of NH 3 -N, TSS, and phosphate. Coleman et al. ( 2001 ) examined the physiological effects of domestic wastewater treatment by three common Appalachian plant species: common rush or soft rush ( Juncus effuses L.), gray club-rush ( Scirpus Validus L.), and broadleaf cattail or bulrush ( Typha latifolia L.). They observed in their experiments about 70% of reduction in total suspended solids (TSS) and biochemical oxygen demand (BOD), 50% to 60% of reduction in nitrogen, ammonia, and phosphate levels, and a significant reduction in feacal coliform populations. Whereas, Zamora et al. ( 2019 ) found the removal efficiency of chemical oxygen demand (COD), total solids suspended (TSS), nitrogen as ammonium (N-NH 4 ) and nitrate (N-NO 3 ), and phosphate (P-PO 4 ) up to 20–60% higher using the three ornamental species of plants viz. Canna indica , Cyperus papyrus , and Hedychium coronarium . The list of various plant species applied for the wastewater treatment is shown in Table 3 .

6.6 Wastewater Treatment by Using Microorganisms

There is a diverse group of bacteria like Pseudomonas fluorescens , Pseudomonas putida , and different Bacillus strains, which are capable to use in biological wastewater systems. These bacteria work in the cluster forms as a floc, biofilm, or granule during the wastewater treatment. Furthermore, after the recognition of bacterial exopolysaccharides (EPS) as an efficient adsorption material, it may be applied in a revolutionary manner for the heavy metal elimination (Gupta & Diwan, 2017 ). There are few examples of EPS, which are commercially available, i.e., alginate ( P. aeruginosa , Azotobacter vinelandii ), gellan (Sphingomonas paucimobilis ), hyaluronan ( . aeruginosa , Pasteurella multocida , Streptococci attenuated strains ), xanthan (Xanthomonas campestris ), and galactopol ( Pseudomonas oleovorans ) (Freitas et al., 2009 ; Freitas, Alves, & Reis, 2011a ; Freitas, Alves, Torres, et al., 2011b ). Similarly, Hesnawi et al. ( 2014 ) experimented biodegradation of municipal wastewater using local and commercial bacteria (Sludge Hammer), where they achieved a significant decrease in synthetic wastewater, i.e., 70%, 54%, 52%, 42% for the Sludge Hammer, B. subtilis , B. laterosponus , and P. aeruginosa , respectively. Therefore, based on the above studies, it can be concluded that bioaugmentation of wastewater treatment reactor with selective and mixed strains can ameliorate the treatment. During recent years, microalgae have attracted the attention of researchers as an alternative system, due to their applicability in wastewater treatment. Algae are the unicellular or multicellular photosynthetic microorganism that grows on water surfaces, salt water, or moist soil. They utilize the exceeding amount of nutrients like nitrogen, phosphorus, and carbon for their growth and metabolism process through their anaerobic system. This property of algae also inhibits eutrophication; that is to avoid over-deposit of nutrients in water bodies. During the nutrient digestion process, algae produce oxygen that is constructive for the heterotrophic aerobic bacteria, which may further be utilized to degrade the organic and inorganic pollutants. Kim et al. ( 2014 ) observed a total decrease in the levels of COD (86%), total nitrogen (93%), and total phosphorus (83%) after using algae in the municipal wastewater consortium. Nmaya et al. ( 2017 ) reported the heavy metal removal efficiency of microalga Scenedesmus sp. from contaminated river water in the Melaka River, Malaysia. They observed the effective removal of Zn (97-99%) on the 3 rd and 7 th day of the experiment. The categorized list of microorganisms used for wastewater treatment is presented in Table 4 .

7 The Computational Approach in Wastewater Treatment

7.1 bioinformatics and genome sequencing.

A computational approach is accessible in wastewater treatment. Several tools and techniques are in use such as, sequencing platforms (Hall, 2007 ; Marsh, 2007 ), metagenome sequencing strategies (Schloss & Handelsman, 2005 ; Schmeisser et al., 2007 ; Tringe et al., 2005 ), bioinformatics tools and techniques (Chen & Pachter, 2005 ; Foerstner et al., 2006 ; Raes et al., 2007 ), and the genome analysis of complex microbial communities (Fig. 4 ). Most of the biological database contains microorganisms and taxonomical information. Thus, these can provide extensive details and supports for further utilization in wastewater treatment–related research and development (Siezen & Galardini, 2008 ). Balcom et al. ( 2016 ) explored that the microbial population residing in the plant roots immersed in the wastewater of an ecological WWTP and showed the evidence of the capacity for micro-pollutant biodegradation using whole metagenome sequencing (WMS). Similarly, Kumar et al. ( 2016 ) revealed that bioremediation of highly polluted wastewater from textile dyes by two novel strains were found to highly decolorize Joyfix Red. They were identified as Lysinibacillus sphaericus (KF032717) and Aeromonas hydrophila (KF032718) through 16S rDNA analysis. More recently, Leddy et al. ( 2018 ) reported that research scientists are making strides to advance the safety and application of potable water reuse with metagenomics for water quality analysis. The application of the bio-computational approach has also been implemented in the advancements of wastewater treatment and disease detection.

figure 4

A schematic showing the overall conceptual framework on which depicting the computational approach in wastewater treatment

7.2 Computational Fluid Dynamics in Wastewater Treatment

In recent years, computational fluid dynamics (CFD), a broadly used method, has been applied to biological wastewater treatment. It has exposed the inner flow state that is the hydraulic condition of a biological reactor (Peng et al., 2014 ). CFD is the application of powerful predictive modeling and simulation tools. It may calculate the multiple interactions between all the water quality and process design parameters. CFD modeling tools have already been widely used in other industries, but their application in the water industry is quite recent. CFD modeling has great applications in water and wastewater treatment, where it mechanically works by using hydrodynamic and mass transfer performance of single or two-phase flow reactors (Do-Quang et al., 1998 ). The level of CFD’s capability varies between different process units. It has a high frequency of application in the areas of final sedimentation, activated sludge basin modeling, disinfection, and greater needs in primary sedimentation and anaerobic digestion (Samstag et al., 2016 ). Now, researchers are enhancing the CFD modeling with a developed 3D model of the anoxic zone to evaluate further hydrodynamic performance (Elshaw et al., 2016 ). The overall conceptual framework and the applications of the computational approach in wastewater treatment are presented in Fig. 4 .

7.3 Computational Artificial Intelligence Approach in Wastewater Treatment

Several studies were obtained by researchers to implement computer-based artificial techniques, which provide fast and rapid automated monitoring of water quality tests such as BOD and COD. Recently, Nourani et al. ( 2018 ) explores the possibility of wastewater treatment plant by using three different kinds of artificial intelligence methods, i.e., feedforward neural network (FFNN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM). Several measurements were done in terms of effluent to tests BOD, COD, and total nitrogen in the Nicosia wastewater treatment plant (NWWTP) and reported high-performance efficiency of artificial intelligence (Nourani et al., 2018 ).

7.4 Remote sensing and Geographical Information System

Since the implementation of satellite technology, the initiation of new methods and tools became popular nowadays. The futuristic approach of remote sensing and GIS technology plays a crucial role in the identification and locating of the water polluted area through satellite imaginary and spatial data. GIS analysis may provide a quick and reasonable solution to develop atmospheric correction methods. Moreover, it provides a user-friendly environment, which may support complex spatial operations to get the best quality information on water quality parameters through remote sensing (Ramadas & Samantaray, 2018 ).

8 Applications of Treated Wastewater

8.1 scope in crop irrigation.

Several studies have assessed the impact of the reuse of recycled/treated wastewater in major sectors. These are agriculture, landscapes, public parks, golf course irrigation, cooling water for power plants and oil refineries, processing water for mills, plants, toilet flushing, dust control, construction activities, concrete mixing, and artificial lakes (Table 5 ). Although the treated wastewater after secondary treatment is adequate for reuse since the level of heavy metals in the effluent is similar to that in nature (Ayers & Westcot, 1985 ), experimental evidences have been found and evaluated the effects of irrigation with treated wastewater on soil fertility and chemical characteristics, where it has been concluded that secondary treated wastewater can improve soil fertility parameters (Mohammad & Mazahreh, 2003 ). The proposed model (Fig. 3 ) is tested partially previously at a laboratory scale by treating the wastewater (from sewage, sugar, and paper industry) in an ultrasonic bath (Kesari et al., 2011a , b ; Kesari & Behari, 2008 ; Kumar et al., 2010 ). Advancing it with ultraviolet and ozone treatment has modified this in the proposed model. A recent study shows that the treated water passed quality measures suited for crop irrigation (Bhatnagar et al., 2016 ). In Fig. 3 , a model is proposed including all three (UV, US, nanoparticle, and ozone) techniques, which have been tested individually as well as in combination (US and nanoparticle) (Kesari et al., 2011a , b ) to obtain the highest water quality standards acceptable for irrigation and even drinking purposes.

A wastewater-irrigated field is a major source of essential and non-essential metals contaminants such as lead, copper, zinc, boron, cobalt, chromium, arsenic, molybdenum, and manganese. While crops need some of these, the others are non-essential metals, toxic to plants, animals, and humans. Kanwar and Sandha ( 2000 ) reported that heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher than in plants grown in the reference soil in their study. Yaqub et al. ( 2012 ) suggest that the use of US is very effective in removing heavy or toxic metals and organic pollutants from industrial wastewater. However, it has been also observed that the metals were removed efficiently, when UV light was combined with ozone (Samarghandi et al., 2007 ). Ozone exposure is a potent method for the removal of metal or toxic compounds from wastewater as also reported earlier (Park et al., 2008 ). Application of US, UV, and O 3 in combination lead to the formation of reactive oxygen species (ROS) that oxidize certain organics, metal ions and kill pathogens. In the process of advanced oxidizing process (AOP) primarily oxidants, electricity, light, catalysts etc. are implied to produce extremely reactive free radicals (such as OH) for the breakdown of organic matters (Oturan & Aaron, 2014 ). Among the other AOPs, ozone oxidization process is more promising and effective for the decomposition of complex organic contaminants (Xu et al., 2020 ). Ozone oxidizes the heavy metal to their higher oxidation state to form metallic oxides or hydroxides in which they generally form limited soluble oxides and gets precipitated, which are easy to be filtered by filtration process. Ozone oxidization found to be efficient for the removal of heavy metals like cadmium, chromium, cobalt, copper, lead, manganese, nickel, and zinc from the water source (Upadhyay & Srivastava, 2005 ). Ultrasonic-treated sludge leads to the disintegration of biological cells and kills bacteria in treated wastewater (Kesari, Kumar, et al., 2011a ; Kesari, Verma, & Behari, 2011b ). This has been found that combined treatment with ultrasound and nanoparticles is more effective (Kesari, Kumar, et al., 2011a ). Ultrasonication has the physical effects of cavitation inactivate and lyse bacteria (Broekman et al., 2010 ). The induced effect of US, US, or ozone may destroy the pathogens and especially during ultrasound irradiation including free-radical attack, hydroxyl radical attack, and physical disruption of cell membranes (Kesari, Kumar, et al., 2011a ; Phull et al., 1997 ; Scherba et al., 1991 ).

8.2 Energy and Economy Management

Municipal wastewater treatment plants play a major role in wastewater sanitation and public health protection. However, domestic wastewater has been considered as a resource or valuable products instead of waste, because it has been playing a significant role in the recovery of energy and resource for the plant-fertilizing nutrients like phosphorus and nitrogen. Use of domestic wastewater is widely accepted for the crop irrigation in agriculture and industrial consumption to avoid the water crisis. It has also been found as a source of energy through the anaerobic conversion of the organic content of wastewater into methane gas. However, most of the wastewater treatment plants are using traditional technology, as anaerobic sludge digestion to treat wastewater, which results in more consumption of energy. Therefore, through these conventional technologies, only a fraction of the energy of wastewater has been captured. In order to solve these issues, the next generation of municipal wastewater treatment plants is approaching total retrieval of the energy potential of water and nutrients, mostly nitrogen and phosphorus. These plants also play an important role in the removal and recovery of emerging pollutants and valuable products of different nature like heavy and radioactive metals, fertilizers hormones, and pharma compounds. Moreover, there are still few possibilities of improvement in wastewater treatment plants to retrieve and reuse of these compounds. There are several methods under development to convert the organic matter into bioenergy such as biohydrogen, biodiesel, bioethanol, and microbial fuel cell. These methods are capable to produce electricity from wastewater but still need an appropriate development. Energy development through wastewater is a great driver to regulate the wastewater energy because it produces 10 times more energy than chemical, thermal, and hydraulic forms. Vermicomposting can be utilized for stabilization of sludge from the wastewater treatment plant. Kesari and Jamal ( 2017 ) have reported the significant, economical, and ecofriendly role of the vermicomposting method for the conversion of solid waste materials into organic fertilizers as presented in Fig. 5 . Solid waste may come from several sources of municipal and industrial sludge, for example, textile industry, paper mill, sugarcane, pulp industry, dairy, and intensively housed livestock. These solid wastes or sewage sludges have been treated successfully by composting and/or vermicomposting (Contreras-Ramos et al., 2005 ; Elvira et al., 1998 ; Fraser-Quick, 2002 ; Ndegwa & Thompson, 2001 ; Sinha et al., 2010 ) Although collection of solid wastes materials from sewage or wastewater and further drying is one of the important concerns, processing of dried municipal sewage sludge (Contreras-Ramos et al., 2005 ) and management (Ayilara et al., 2020 ) for vermicomposting could be possible way of generating organic fertilizers for future research. Vermicomposting of household solid wastes, agriculture wastes, or pulp and sugarcane industry wastes shows greater potential as fertilizer for higher crop yielding (Bhatnagar et al., 2016 ; Kesari & Jamal, 2017 ). The higher amount of solid waste comes from agricultural land and instead of utilizing it, this biomass is processed by burning, which causes severe diseases (Kesari & Jamal, 2017 ). Figure 3 shows the proper utilization of solid waste after removal from wastewater; however, Fig. 5 showing greater possibility in fertilizer conversion which has also been discussed in detail elsewhere (Bhatnagar et al., 2016 ; Nagavallemma et al., 2006 )

figure 5

Energy production through wastewater (reproduced from Bhatnagar et al., 2016 ; Kesari & Jamal, 2017 )

9 Conclusions and future perspectives

In this paper, we have reviewed environmental and public health issues associated with the use of untreated wastewater in agriculture. We have focused on the current state of affairs concerning the wastewater treatment model and computational approach. Given the dire need for holistic approaches for cultivation, we proposed the ideas to tackle the issues related to wastewater treatment and the reuse potential of the treated water. Water resources are under threat because of the growing population. Increasing generation of wastewater (municipal, industrial, and agricultural) in developing countries especially in India and other Asian countries has the potential to serve as an alternative of freshwater resources for reuse in rice agriculture, provide appropriate treatment, and distribution measures are adopted. Wastewater treatment is one of the big challenges for many countries because increasing levels of undesired or unknown pollutants are very harmful to health as well as environment. Therefore, this review explores the ideas based on current and future research. Wastewater treatment includes very traditional methods by following primary, secondary, and tertiary treatment procedures, but the implementation of advanced techniques is always giving us a big possibility of good water quality. In this paper, we have proposed combined methods for the wastewater treatment, where the concept of the proposed model works on the various types of wastewater effluents. The proposed model not only useful for wastewater treatment but also for the utilization of solid wastes as fertilizer. An appropriate method for the treatment of wastewater and further utilization for drinking water is the main futuristic outcome. It is also highly recommendable to follow the standard methods and available guidelines provided WHO. In this paper, the proposed role of the computational model, i.e., artificial intelligence, fluid dynamics, and GIS, in wastewater treatment could be useful in future studies. In this review, health concerns associated with wastewater irrigation for farmers and irrigated crops consumers have been discussed.

The crisis of freshwater is one of the growing concerns in the twenty-first century. Globaly, about 330 km 3 of municipal wastewater is generated annually (Hernández-Sancho et al., 2015 ). This data provides a better understanding of why the reuse of treated wastewater is important to solve the issues of the water crisis. The use of treated wastewater (industrial or municipal wastewater or Seawater) for irrigation has a better future for the fulfillment of water demand. Currently, in developing countries, farmers are using wastewater directly for irrigation, which may cause several health issues for both farmers and consumers (crops or vegetables). Therefore, it is very imperative to implement standard and advanced methods for wastewater treatment. A local assessment of the environmental and health impacts of wastewater irrigation is required because most of the developed and developing countries are not using the proper guidelines. Therefore, it is highly required to establish concrete policies and practices to encourage safe water reuse to take advantage of all its potential benefits in agriculture and for farmers.

Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9 , 3077–3092.

Google Scholar  

Adegoke, A. A., Faleye, A. C., Singh, G., & Stenström, T. A. (2016). Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules, 22 , E29.

Adegoke, A. A., Stenström, T. A., & Okoh, A. I. (2017). Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: Looking beyond contemporary antibiotic therapy. Frontiers in Microbiology, 8 , 2276.

Adegoke, A. A., Amoah, I. D., Stenström, T. A., Verbyla, M. E., & Mihelcic, J. R. (2018). Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health, 6 , 337.

Adewumia, J. R., Ilemobadea, A. A., & Vanzyl, J. E. (2010). Treated wastewater reuse in South Africa: Overview, potential, and challenges. Resources, Conservation and Recycling, 55 , 221–231.

Agoro, M. A., Adeniji, A. O., Adefisoye, M. A., & Okoh, O. O. (2020). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water, 12 , 2746.

CAS   Google Scholar  

Akasaka, T., & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes. Acta Biomaterialia, 5 , 607–612.

Akponikpe, P., Wima, K., Yakouba, H., & Mermoud, A. (2011). Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplants in semi-arid West-Africa: Benefits and risks. Agricultural Water Management, 98 , 834–840.

Alghobar, M. A., Ramachandra, L., & Suresha, S. (2014). Effect of sewage water irrigation on soil properties and evaluation of the accumulation of elements in Grass crop in Mysore city, Karnataka, India. American Journal of Environmental Protection, 3 , 283–291.

Al-Nakshabandi, G. A., Saqqar, M. M., Shatanawi, M. R., Fayyad, M., & Al-Horani, H. (1997). Some environmental problems associated with the use of treated wastewater for irrigation in Jordan. Agricultural Water Management, 34 , 81–94.

Amabilis-Sosa, L. E., Vázquez-López, E., García Rojas, J. L., Roé-Sosa, A., & Moeller-Chávez, G. E. (2018). Efficient bacteria inactivation by ultrasound in municipal wastewater. Environments, 5 , 47.

Amoah, I. D., Adegoke, A. A., & Stenström, T. A. (2018). Soil-transmitted helminth infections associated with wastewater and sludge reuse: A review of current evidence. Tropical Medicine & International Health, 23 (7), 692–703.

Anastasi, A., Spina, F., Prigione, V., Tigini, V., Giansanti, P., & Varese, G. C. (2010). Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresource Technology, 101 , 3067–3075.

Angelakis, A., & Snyder, S. (2015). Wastewater treatment and reuse: Past, present, and future. Water, 7 , 87–95.

Angelakis, A. N., Marecos do Monte, M. H. F., Bontoux, L., & Asano, T. (1999). The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Research, 33 , 2201–2217.

Asaithambi, P., & Matheswaran, M. (2016). Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology. Arabian Journal of Chemistry, 9 , S981–S987.

Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture; Food and Agriculture Organization of the United . Nations.

Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12 , 4456.

Azevedo, B. F., Furieri, L. B., Peçanha, F. M., Wiggers, G. A., Vassallo, P. F., Simões, M. R., et al. (2014). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Preventive Medicine and Public Health, 47 , 74–83.

Aziz, F., & Farissi, M. (2014). Reuse of treated wastewater in agriculture: solving water deficit problems in arid areas. Annals of West University of Timişoara Series of Biology, 17 , 95–110.

Balcom, I. N., Driscoll, H., Vincent, J., & Leduc, M. (2016). Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals. F1000 Research, 5 , 1881.

Balkhair, K. S. (2016a). Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater. Saudi Journal of Biological Sciences, 23 (1), S83–S92.

Balkhair, K. S. (2016b). Impact of treated wastewater on soil hydraulic properties and vegetable crop under irrigation with treated wastewater, field study and statistical analysis. Journal of Environmental Biology, 37 (5), 1143–1152.

Balkhair, K. S., & Ashraf, M. A. (2016). Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Science, 23 , S32–S44.

Behling, E., Diaz, A., Colina, G., Herrera, M., Gutierrez, E., Chacin, E., et al. (1996). Domestic wastewater treatment using a UASB reactor. Bioresource Technology, 61 , 239–245.

Bent, S., & Bohm, K. (1995). Copper induced liver cirrhosis in a 13-month-old boy. Gesundheitswesen (health system in German), 57 , 667–669.

Bhatnagar, A., Kesari, K. K., & Shurpali, N. (2016). Multidisciplinary approaches to handling wastes in sugar industries. Water, Air, & Soil Pollution, 11 , 1–30.

Blume, T., & Neis, U. (2004). Improved wastewater disinfection by ultrasonic pre-treatment. Ultrasonics Sonochemistry, 11 , 333–336.

Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239 , 229–246.

Bonefeld-Jorgensen, E. C., Long, M., Bossi, R., Ayotte, P., Asmund, G., Kruger, T., et al. (2011). Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environmental Health Perspectives, 10 , 88–95.

Börjesson, S., Melin, S., Matussek, A., & Lindgren, P. E. (2009). A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant. Water Research, 43 , 925–932.

Bos, R., Carr, R., & Keraita, B. (2010). Assessing and mitigating wastewater-related health risks in low income countries: An introduction. In P. Drechsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), In: Wastewater irrigation and health: Assessing and mitigating risk in low-income countries (pp. 29–47). Earthscan.

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6 , e04691.

Brissaud, F. (2008). Criteria for water recycling and reuse in the Mediterranean countries. Desalination, 218 , 24–33.

Broekman, S., Pohlmann, O., Beardwood, E. S., & de Meulenaer, E. C. (2010). Ultrasonic treatment for microbiological control of water systems. Ultrasonics Sonochemistry, 17 , 1041–1048.

Brumer, L. (2000). Use of aquatic macrophytes to improve the quality of effluents after chlorination. Ph.D. Dissertation, Technion Israel Institute of Technology, Haifa.

Busgang, A., Friedler, E., Gilboa, Y., & Gross, A. (2018). Quantitative microbial risk analysis for various bacterial exposure scenarios involving greywater reuse for irrigation. Water, 10 , 413.

Caplin, J. L., Hanlon, G. W., & Taylor, H. D. (2008). Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environmental Microbiology, 10 , 885–892.

Carey, C., Lee, H., & Trevors, J. (2004). Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium homynis oocyst. Water Research, 38 , 818–868.

Carr, R. (2005). WHO guidelines for safe wastewater use-more than just numbers. Irrigation and Drainage, 54 , 103–111.

CCREM. (1987). Canadian Water Quality Guidelines . Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers.

Chang, J. S., Chou, C., & Chen, S. Y. (2001). Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochemistry, 36 , 757–763.

Chaoua, S., Boussaa, S., Gharmali, A. E., & Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18, 429–436.

Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Computational Biology, 1 , 106–112.

Chen, W., Lu, S., Pan, N., & Jiao, W. (2013). Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resources Research, 49 , 7401–7410.

City of Cape Town (CoCT). 2007 Water services Development plan 2007/2008. www.capetown.gov.za/en/Water/WaterservicesDevPlan/Pages/WaterServDevPlan200708.aspx Accessed 12 June 2008.

Clemmens, A. J., Allen, R. G., & Burt, C. M. (2008). Technical concepts related to conservation of irrigation and rainwater in agricultural systems. Water Resources Research, 44 , 1–16.

Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, B., & Skousen, J. (2001). Treatment of domestic wastewater by three plant species in constructed wetlands. Water, Air, and Soil Pollution, 3 , 283–295.

Contreras, J. D., Meza, R., Siebe, C., Rodríguez-Dozal, S., López-Vidal, Y. A., Castillo-Rojas, G., et al. (2017). Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: A 25-year update. Water Research, 123 , 834–850.

Contreras-Ramos, S. M., Escamilla-Silva, E. M., & Dendooven, L. (2005). Vermicomposting of biosolids with cow manure and wheat straw. Biological Fertility of Soils, 41 , 190–198.

Craun, M. F., Craun, G. F., Calderon, R. L., & Beach, M. J. (2006). Waterborne outbreaks in the United States. Journal of Water and Health, 4 (suppl 2), 19–30.

Craun, G. F., Brunkard, J. M., Yoder, J. S., Roberts, V. A., Carpenter, J., Wade, T., et al. (2010). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clinical Microbiology Reviews, 23 , 507–528.

Dang, Q., Tan, W., Zhao, X., Li, D., Li, Y., Yang, T., et al. (2019). Linking the response of soil microbial community structure in soils to long-term wastewater irrigation and soil depth. The Science of the total environment, 688, 26–36.

Delgado, A., Anselmo, A. M., & Novais, J. M. (1998). Heavy metal biosorption by dried powdered mycelium of Fusarium Flocci ferum. Water Environmental Research, 70 , 370.

Dewitt, J. C., Peden-Adams, M. M., Keller, J. M., & Germolec, D. R. (2012). Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic Pathology, 40 , 300–311.

Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. (2016). A review of health risks and pathways for exposure to wastewater use in agriculture. Environmental Health Perspectives, 124 , 900–909.

Do-Quang, Z., Cockx, A., Line, A., & Roustan, M. (1998). Computational fluid dynamics applied to water and wastewater treatment facility modeling. Environmental Engineering and Policy, 1 , 137–147.

Drechsel, P., Scott, A., Sally, R., Redwood, M., Bachir, A. (2010). Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; International Water Management Institute, Ed.; Earthscan: London, UK.

Duan, J. J., Zhao, J. N., Xue, L. H., & Yang, L. Z. (2016). Nutrient removal of a floating plant system receiving low- pollution wastewater: Effects of plant species and influent concentration. IOP Conference Series: Earth and Environmental Science, 41 , 1.

Duan, B., Zhang, W., Zheng, H., Wu, C., Zhang, Q., & Bu, Y. (2017). Comparison of health risk assessments of heavy metals and as in sewage sludge from wastewater treatment plants (WWTPs) for adults and children in the Urban district of Taiyuan, China. International Journal of Environmental Research and Public Health, 14 , 1194.

Duncan, M. (2009). Waste stabilization ponds: Past, present and future. Desalination and Water Treatment, 4 , 85–88.

Ecosse, D. (2001). Alternative techniques in order to meet the shortage of water in the world. Mem DESS Quality and Management of Water, Fac. Science, Amiens 62.

EEA CSI (2018). https://www.eea.europa.eu/themes/water/water-resources/water-use-by-sectors . Accessed 3 Oct 2019.

EPA (Environmental Protection Agency) (2002).National Recommended Water Quality Criteria: 2002. Office of Water, Office of Science and Technology. EPA-822-R-02-047.

Elshaw, A., Hassan, N. M. S., Khan, M. M. K. (2016). CFD modelling and optimisation of a wastewater treatment plant bioreactor—A case study. In Proceedings of the 2016 3rd Asia-Pacific World Congress on Computer science and Engineering (APWC on CSE), 232–239 https://doi.org/10.1109/APWC-on-CSE.2016.046 .

Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mills and dairy industries with Elsenia anderi. A pilot scale study. Journal of Bioresource Technology, 63 , 205–211.

Falkenberg, T., & Saxena, D. (2018). Impact of wastewater-irrigated urban agriculture on diarrhea incidence in Ahmedabad, India. Indian Journal of Community Medicine, 43 , 102–106.

FAO, (1985) Water Quality for Agriculture. Irrigation and Drainage Paper No. 29, Rev. 1. Food and Agriculture Organization of the United Nations, Rome.

Fazeli, M. S., Khosravan, F., Hossini, M., Sathyanarayan, S., & Satish, P. N. (1998). Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnataka, India. Environmental Geology, 34 , 297–302.

FEPA. (1991). Proposed National Water Quality Standards . Federal Environmental Protection Agency.

Foerstner, K. U., Von-Mering, C., & Bork, P. (2006). Comparative analysis of environmental sequences: potential and challenges. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 361 , 519–523.

Founou, R. C., Founou, L. L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 12 , e0189621. https://doi.org/10.1371/journal.pone.0189621 .

Article   CAS   Google Scholar  

Fraser-Quick, G. (2002). Vermiculture – A sustainable total waste management solution. What’s New in Waste Management?, 4 , 13–16.

Freitas, F., Alves, V. D., Pais, J., Costa, N., Oliveira, C., & Mafra, L. (2009). Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technology, 100 , 859–865.

Freitas, F., Alves, V. D., & Reis, M. A. (2011a). Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in Biotechnology, 29 , 388–398.

Freitas, F., Alves, V. D., Torres, C. A., Cruz, M., Sousa, I., & Melo, M. J. (2011b). Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers, 83 , 159–165.

Frontistis, Z., Xekoukoulotakis, N. P., Hapeshi, E., Venieri, D., Fatta-Kassinos, D., & Mantzavinos, D. (2011). Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chemical Engineering Journal, 178 (15), 175–182.

Fukushima, M., Ishizaki, A., & Sakamoto, M. (1970). On distribution of heavy metals in rice field soil in the “Itai-itai” disease epidemic district. Japanese Journal of Hygiene, 24 , 526–535.

Gatta, G., Libutti, A., Gagliardi, A., Disciglio, G., Beneduce, L., d’Antuono, M., Rendina, M., & Tarantino, E. (2015a). Effects of treated agro-industrial wastewater irrigation on tomato processing quality. Italian Journal of Agronomy, 10 (2), 97–100.

Gatta, G., Libutti, A., Gagliardi, A., Beneduce, L., Borruso, L., Disciglio, G., & Tarantino, G. (2015b). Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agricultural Water Management, 149 , 33–43.

Gehrke, I., Geiser, A., & Somborn-Schulz, A. (2015). Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, 8 , 1–17.

Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17 , 3782.

Giddins, M. J., Macesic, N., Annavajhala, M. K., Stump, S., Khan, S., McConville, T. H., Mehta, M., Gomez-Simmonds, A., & Uhlemann, A. C. (2017). Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in bla(KPC-2)-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrobial Agents and Chemotherapy, 62 , e02101–e02117.

Goel, J., Kadirvelu, K., Rajagopal, C., Kumar, G., & V. (2005). Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials, 125 (1-3), 211–220.

Goldstein, R. E. R. (2013). Antibiotic-resistant bacteria in wastewater and potential human exposure through wastewater reuse. PhD Dissertation, University of Maryland.

Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13 , 58–71.

Gupta, S. K., Shin, H., Han, D., Hur, H. G., & Unno, T. (2018). Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment. Plant Journal of Microbiology, 56 , 408–415.

GWI Global Water Intelligence. (2009). PUB study: Perspectives of water reuse . GWI Publishing.

Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. Journal of Experimental Biology, 210 , 1518–1525.

Halliwell, D. J., Barlow, K. M., & Nash, D. M. (2001). A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Australian Journal of Soil Research, 39 , 1259–1267.

He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., & Alvarez, P. J. J. (2020). Antibiotic resistance genes from livestock waste: Occurrence, dissemination and treatment. npj Clean Water, 3 , 4.

Herc, E. S., Kauffman, C. A., Marini, B. L., Perissinotti, A. J., & Miceli, M. H. (2017). Daptomycin nonsusceptible vancomycin resistant Enterococcus bloodstream infections in patients with hematological malignancies: Risk factors and outcomes. Leukemia & Lymphoma, 58 , 2852–2858.

Hernández-Sancho, F., Lamizana-Diallo, B., Mateo-Sagasta, J., & Qadeer, M. (2015). Economic valuation of wastewater –The cost of action and the cost of no action . United Nations Environment Programme.

Hesnawi, R., Dahmani, K., Al-Swayah, A., Mohamed, S., & Mohammed, S. A. (2014). Biodegradation of municipal wastewater with local and commercial bacteria. Procedia Engineering, 70 , 810–814.

Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109 , 3232–3237.

Hua, I., & Thompson, J. E. (2000). Inactivation of E. coli by sonication at discrete ultrasonic frequencies. Water Research, 34 , 3888–3893.

Hussain, A., Priyadarshi, M., & Dubey, S. (2019). Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Applied Water Science, 9 , 122.

Icgen, B., & Yilmaz, F. (2014). Co-occurrence of antibiotic and heavy metal resistance in Kizilirmak River isolates. Bulletin of Environmental Contamination and Toxicology, 93 , 735–743.

Iguchi, S., Mizutani, T., Hiramatsu, K., & Kikuchi, K. (2016). Rapid acquisition of linezolid resistance in methicillin-resistant Staphylococcus aureus: Role of hypermutation and homologous recombination. PLoS One, 11 , e0155512.

Indiana State Department of Health, 2009. Diseases Involving Sewage. https://www.in.gov/isdh/22963.htm

Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., & Kanzaki, Y. (2002). Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. Journal of Inorganic Biochemistry, 92 , 37–42.

Jacquez, R. B., Walner, H. Z. (1985). Combining nutrient removal with protein synthesis using a water hyacinth-freshwater prawn polyculture wastewater treatment system. New Mexico Water Resources Research Institute . 92.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7 (2), 60–72.

Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68 , 167–182.

Jeong, H., Kim, H., & Jang, J. (2016). Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South Korea. Water, 8 , 169.

Jia, S., Zhang, X. (2020). Biological HRPs in wastewater. In High-risk pollutants in wastewater. Eds. Ren, H. and Zhang, X. 41-67.

Jiménez, B., & Asano, T. (2008). Water reclamation and reuse around the world. In B. Jiménez & T. Asano (Eds.), In: Water reuse: An International Survey of Current Practice, Issues and Needs (pp. 3–26). IWA Publishing .

Jindal, A., Kamat, S. (2011). Water recycling and reuse for domestic and industrial sectors. Chemical Engineering World , 52-62.

Jyothi, N.R. (2020). Heavy metal sources and their effects on human health, heavy metals - Their environmental impacts and mitigation. Ed. Nazal, M. 95370.

Jyothi, N.R. and Farook, N.A.M. (2020). Mercury toxicity in public health, Heavy Metal Toxicity in Public Health. 1-12.

Jyoti, K. K., & Pandit, A. B. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 38 , 2249–2258.

Kalavrouziotis, I. K., Kokkinos, P., Oron, G., Fatone, F., Bolzonella, D., Vatyliotou, M., et al. (2015). Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalination and Water Treatment, 53 , 2015–2030.

Kanwar, J., & Sandha, M. (2000). Waste water pollution injury to vegetable crops: A review. Agricultural Research Communication Centre, India, 21 , 133–136.

Katsoyiannis, I. A., Gkotsis, P., Castellana, M., Cartechini, F., & Zouboulis, A. I. (2017). Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent. Journal of Environmental Management, 1 (190), 132–139.

Kenny, J. F., Barber, N. L., Hutson, S. S., Linsey, K. S., Lovelace, J. K., & Maupin, M. A. (2009). Estimated use of water in the United States in 2005. U.S. Geological Survey Circular, 1344 , 52.

Kesari, K. K., & Behari, J. (2008). Ultrasonic impact on bacterial population in sewage sample. International Journal of Environment and Waste Management, 2 , 233–244.

Kesari, K. K., Jamal, Q. M. S. (2017). Review Processing, properties and applications of agricultural solid waste: Effect of an open burning in environmental toxicology. In: Kesari K. (eds) Perspectives in Environmental Toxicology. Environmental Science and Engineering . Springer, Cham. Chapter 8:161-181.

Kesari, K. K., Kumar, S., Verma, H. N., & Behari, J. (2011a). Influence of ultrasonic treatment in sewage sludge. Hydrology: Current Research, 2 , 115.

Kesari, K. K., Verma, H. N., & Behari, J. (2011b). Physical methods in wastewater treatment. International Journal of Environmental Technology and Management, 14 , 43–66.

Khaskhoussy, K., Kahlaoui, B., Messoudi, N. B., Jozdan, O., Dakheel, A., & Hachicha, M. (2015). Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Engineering Technology and Applied Science Research, 5 , 805–810.

Kim, S. Y., Kim, J. H., Kim, C. J., & Oh, D. K. (1996). Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnology Letters, 18 , 1161–1164.

Kim, B. H., Kang, Z., Ramanan, R., Choi, J. E., Cho, D. H., Oh, H. M., et al. (2014). Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. Journal of Microbiology and Biotechnology, 24 , 1123–1132.

Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10 , 8434 .

Kocabas, Z. O., Aciksoz, B., Yurum, Y. (2012). Binding mechanisms of As(III) on activated carbon/titanium dioxide nanocomposites: a potential method for arsenic removal from water, MRS online proceedings library. Published online by Cambridge University Press 1449.

König, M., Escher, B. I., Neale, P. A., Krauss, M., Hilscherová, K., Novák, J., et al. (2017). Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environmental Pollution, 220 (Part B), 1220–1230.

Kumar, R., & Chawla, J. (2014). Removal of cadmium ion from water/wastewater by nano-metal oxides. Water Quality Exposure and Health, 5 , 4.

Kumar, M., Kesari, K. K., & Behari, J. (2010). Low frequency ultrasonic irradiation of activated sludge. International Journal of Environment and Pollution, 43 , 52–65.

Kumar, S. S., Shantkriti, S., Muruganandham, T., Murugesh, E., Rane, N., & Govindwar, N. P. (2016). Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecological Informatics, 31 , 112–121.

Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R. K., et al. (2021). Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Scientific Reports, 11 , 2376.

Leddy, M. B., Plumlee, M. H., Kantor, R. S., Nelson, K. L., Miller, S. E., Kennedy, L. C., et al. (2018). High-throughput DNA sequencing to profile microbial water quality of potable reuse. Water online, 1-4.

Lee, I., & Viberg, H. (2013). A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology, 37 , 190–196.

Libutti, A., Gatta, G., Gagliardi, A., Vergine, P., Pollice, A., Beneduce, L., Disciglio, G., & Tarantino, E. (2018). Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agricultural Water Management, 196 , 1–14.

Liu, J., Ma, Y., Xu, T., & Shao, G. (2010). Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. Journal of Hazardous Materials, 178 , 1021–1029.

Lv, L., Yu, X., Xu, Q., & Ye, C. (2015). Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. Environmental Pollution, 205 , 291–298.

Madsen, H., Poultsen, L., & Grandjean, P. (1990). Risk of high copper content in drinking water. Ugeskr Laeger (Journal of the Danish Medical Association), 152 (25), 1806–1809.

Mahendran, R., Ramli, N. H., & Abdurrahman, H. N. (2014). Study the effect of using ultrasonic membrane anaerobic system in treating sugarcane waste and methane gas production. International Journal of Research in Engineering and Technology, 3 , 299–303.

Mahfooz, Y., Yasar, A., Guijian, L., Islam, Q. U., Akhtar, A. B. T., Rasheed, R., Irshad, S., & Naeem, U. (2020). Critical risk analysis of metals toxicity in wastewater irrigated soil and crops: a study of a semi-arid developing region. Scientific Reports, 10 , 12845.

Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore. Pakistan, Arabian Journal of Chemistry, 7 (1), 91–99.

Mañas, P., Castro, E., & Heras, J. (2009). Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms. Journal of Environmental Science and Health, 44 , 1261.

Marchal, M., Briandet, R., Koechler, S., Kammerer, B., & Bertin, P. N. (2010). Effect of arsenite on swimming motility delays surface colonization in Herminiimona sarsenicoxydans. Microbiology, 156 , 2336–2342.

Marcussen, H., Holm, P. E., Ha, L. T., & Dalsgaard, A. (2007). Food safety aspects of toxic element accumulation in fish from wastewater-feed ponds in Hanoi, Vietnam . Tropical Medicine & International Health, 12 , 34–39.

Marsh, S. (2007). Pyrosequencing applications. Methods in Molecular Biology, 373 , 15–24.

Meehan, C., Bjourson, A. J., & McMullan, G. (2001). Paeni bacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. International Journal of Systematic and Evolutionary Microbiology, 51 , 1681–1685.

Mehmood, A., Mirza, A. S., Choudhary, M. A., Kim, K. H., Raza, W., Raza, N., Lee, S. S., Zhang, M., Lee, J. H., & Sarfraz, M. (2019). Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, 168 , 382–388.

Melanta, S. (2008). Aquatic bacteria removal using carbon nanotubes. Biological and Agricultural Engineering Undergraduate Thesis . University of Arkansas.

Mohammad, M., & Mazahreh, N. (2003). Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Communications in Soil Science and Plant Analysis, 34 , 181–1294.

Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hila, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356 , 226–254.

Mohsen, M. S. (2004). Treatment and reuse of industrial effluents: Case study of a thermal power plant. Desalination, 167 , 75–86.

Mostafaii, G., Chimehi, E., Gilasi, H. R., & Iranshahi, L. (2017). Investigation of zinc oxide nanoparticles effects on removal of total coliform bacteria in activated sludge process effluent of municipal wastewater. Journal of Environmental Science and Technology, 1 , 49–55.

Naddeo, V., Belgiorno, V., Ricco, D., & Kassinos, D. (2009). Degradation of diclofenac by sonolysis, ozonation and their simultaneous application. Ultrasonics Sonochemistry, 16 , 790–794.

Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V. V., Vineela, C., Babu, R. M., & Sahrawat, K. L. (2006). Vermicomposting: recycling wastes into valuable organic fertilizer. SAT eJournal, 2 , 1–16.

Narain, D. M., Bartholomeus, R. P., Dekker, S. C., & Van Wezel, A. P. (2020). Natural purification through soils: Risks and opportunities of sewage effluent reuse in sub-surface irrigation. In In: Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews) (pp. 1–33). Springer. https://doi.org/10.1007/398_2020_49 .

Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance and Infection Control, 7 , 58.

Ndegwa, P. M., & Thompson, S. A. (2001). Integrated composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology, 76 , 107–112.

Nizam, N. U. M., Hanafiah, M. M., Noor, I. M., & Karim, H. I. A. (2020). Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences, 10 , 2712.

Njuguna, S. M., Makokha, V. A., Yan, X., Gituru, R. W., Wang, Q., & Wang, J. (2019). Health risk assessment by consumption of vegetables irrigated with reclaimed wastewater: A case study in Thika (Kenya). Journal of Environmental Management, 231 , 576–581.

Nmaya, M. M., Agam, M. A., Matias-Peralta, H. M., Yabagi, J. A., & Kimpa, M. I. (2017). Freshwater green microalga for bioremediation of river melaka heavy metals contamination. Journal of Science and Technology, 9 , 118–123.

Nour, A. H., & Zainal, Z. (2014). Membrane fouling control by ultrasonic membrane anaerobic system (UMAS) to produce methane gas. International Journal of Engineering Science Research Technology, 3 , 487–497.

Nourani, V., Elkiran, G., & Abba, S. I. (2018). Wastewater treatment plant performance analysis using artificial intelligence – An ensemble approach. Water Science and Technology, 78 (10), 2064–2076.

Numberger, D., Ganzert, L., Zoccarato, L., Mühldorfer, K., Sauer, S., & Grossart, H. P. (2019). Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Scientific Reports, 9 , 9673.

Odigie, J. O. (2014). Harmful effects of wastewater disposal into water bodies: A case review of the Ikpoba river, Benin city, Nigeria. Tropical Freshwater Biology, 23 , 87–101.

Oilgae Guide to Algae-based Wastewater Treatment. (2014). Commonly used algae strains for wastewater treatment. http://www.oilgae.com/blog/2014/01/commonly-used-algae-strains-for-waste-water-treatment.html . Accessed 5 May 2021

Okoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 7 , 2620–2637.

Oturan, M. A., & Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44 , 2577–2641.

Paleologou, A., Marakas, H., Xekoukoulotakis, N. P., Moya, A., Vergara, Y., Kalogerakis, N., Gikas, P., & Mantzavinos, D. (2007). Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catalysis Today, 129 , 136–142.

Pan, B., & Xing, B. S. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science and Technology, 42 , 9005–9013.

Panthi, S., Sapkota, A. R., Raspanti, G., Allard, S. M., Bui, A., Craddock, H. A., Murray, R., et al. (2019). Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environmental Research, 174 , 1–8.

Park, K. Y., Maeng, S. K., Song, K. G., & Ahn, K. H. (2008). Ozone treatment of wastewater sludge for reduction and stabilization. Journal Environmental Science Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 43 , 1546–1550.

Pedrero, F., Kalavrouziotis, I., Alarcón, J. J., Koukoulakis, P., & Asano, T. (2010). Use of treated municipal wastewater in irrigated agriculture. Review of some practices in Spain and Greece. Agricultural Water Management, 97 , 1233–1241.

Peng, S. M., Chen, Y. D., Guo, W. Q., Yang, S. S., Wu, Q. L., Luo, H. C., & Ren, N. Q. (2014). The Application of computational fluid dynamics (CFD) in wastewater biological treatment field. Applied Mechanics and Materials, 507 , 711–715.

Pesoutova, R., Hlavinek, P., & Matysikova, J. (2011). Use of advanced oxidation processes for textile wastewater treatment- A review. Food and Environmental Safety, 10 , 59–65.

Petrier, C., Jeunet, A., Luche, J. L., & Reverdy, G. (1992). Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. Journal of the American Chemical Society, 25 , 148–3150.

Pham-Duc, P., Nguyen-Viet, H., Hattendorf, J., et al. (2014). Diarrhoeal diseases among adult population in an agricultural community Hanam province, Vietnam, with high wastewater and excreta reuse. BMC Public Health, 14 , 978.

Phull, S. S., Newman, A. P., Lorimer, J. P., Pollet, T. J., & Mason, T. J. (1997). The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4 , 157–164.

Poustie, A., Yang, Y., Verburg, P., Pagilla, K., & Hanigan, D. (2020). Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Science of the Total Environment, 739 , 139756.

Punshon, T., Jackson, B. P., Meharg, A. A., Warczack, T., Scheckel, K., & Guerinot, M. L. (2017). Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 581–582 , 209–220.

Puzas, J. E., Campbell, J., O’Keefe, R. J., & Rosier, R. N. (2004). Lead toxicity in the skeleton and its role in osteoporosis. In Nutrition and Bone Health (pp. 373–376). Humana Press.

Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P. G., Drechsel, P., Bahri, A., et al. (2010). The challenges of wastewater irrigation in developing countries. Agricultural Water Management, 97 , 561–568.

Raes, J., Foerstner, K. U., & Bork, P. (2007). Get the most out of your metagenome: Computational analysis of environmental sequence data. Current Opinion in Microbiology, 10 , 490–498.

Ramadas, M., & Samantaray, A. K. (2018). Applications of remote sensing and GIS in water quality monitoring and remediation: A state-of-the-art review. In S. Bhattacharya, A. Gupta, A. Gupta, & A. Pandey (Eds.), Water remediation. Energy, Environment, and Sustainability . Springer.

Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I. H., Yasar, A., Ali, S., Yasmeen, T., & Riaz, M. (2015). Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arabian Journal of Chemistry, 8 , 780–786.

Russ, R., Rau, J., & Stolz, A. (2000). The function of cytoplasmic flavin reductases in the reduction of azodyes by bacteria. Applied and Environmental Microbiology, 66 , 1429–1434.

Sacks, M., & Bernstein, N. (2011). Utilization of reclaimed wastewater for irrigation of field-grown melons by surface and subsurface drip irrigation. Israel Journal of Plant Sciences, 59 , 159–169.

Sağ, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Separation and Purification Reviews, 30 , 1–48.

Salem, H. M., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health (pp. 542–556). ICEHM .

Samarghandi, M. R., Nouri, J., Mesdaghinia, A. R., Mahvi, A. H., Nasseri, S., & Vaezi, F. (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. International journal of Environmental Science and Technology, 4 , 19–25.

Samie, A., Obi, L., Igumbor, O., & Momba, B. (2009). Focus on 14 sewage treatment plants in the Mpumalanga province, South Africa in order to gauge the efficiency of wastewater treatment. African Journal of Microbiology Research, 8 , 3276–3285.

Samstag, R. W., Ducoste, J. J., Griborio, A., Nopens, I., Batstone, D. J., Wicks, J., & Laurent, J. (2016). CFD for wastewater treatment: An overview. Water Science and Technology, 74 , 549–563.

Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016 , 2475067.

Sato, T., Qadir, M., Yamamoto, S., Endo, T., & Zahoor, A. (2013). Global, regional, and country level need for data on wastewater generation, treatment, and use. Agricultural Water Management, 130 , 1–13.

Scherba, G., Weigel, R. M., & Obrien, W. D. (1991). Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57 , 2079–2084.

Schloss, P. D., & Handelsman, J. (2005). Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biology, 6 , 229.

Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75 , 955–962.

Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (2004). Wastewater use in irrigated agriculture: Management challenges in developing countries. In C. A. Scott, N. I. Faruqui, & L. Raschid-Sally (Eds.), Wastewater use in irrigated agriculture: Confronting the livelihood and environmental realities (pp. 1–10). CABI Publishing.

Scott, C. A., Drechsel, P., Raschid-Sally, L., Bahri, A., Mara, D., Redwood, M., et al. (2009). Wastewater irrigation and health: Challenges and Outlook for mitigating risks in low-income countries. In P. Drechsel, C. A. Scott, L. Raschid-Sally, M. Redwood, & A. Bahri (Eds.), In: Wastewater irrigation and health: Assessing and mitigating risk in low-income countries (pp. 381–394). Earthscan .

Sengupta, S., Nawaz, T., & Beaudry, J. (2015). Nitrogen and phosphorus recovery from wastewater. Current Pollution Reports, 1 , 155–166.

Shakir, R., Davis, S., Norrving, B., Grisold, W., Carroll, W. M., Feigin, V., & Hachinski, V. (2016). Revising the ICD: Stroke is a brain disease. Lancet, 19 , 2475–2476.

Sharma, N. K., Bhardwaj, S., Srivastava, P. K., Thanki, Y. J., Gadhia, P. K., & Gadhia, M. (2012). Soil chemical changes resulting from irrigating with petrochemical effluents. International journal of Environmental Science and Technology, 9 , 361–370.

Sheet, I., Kabbani, A., & Holail, H. (2014). Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/ graphite oxide composite. Energy Procedia, 50 , 130–138.

Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N., & Kiguchi, M. (2014). Projection of future world water resources under SRES scenarios: An integrated assessment. Hydrological Sciences Journal, 59 , 1775–1793.

Shuval, H. I., Yekutiel, P., & Fattal, B. (1985). Epidemiological evidence for helminth and cholera transmission by vegetables irrigated with wastewater. Jerusalem - Case study. Water Science and Technology, 17 , 433–442.

Siezen, R. J., & Galardini, M. (2008). Genomics of biological wastewater treatment. Microbial Biotechnology, 1 , 333–340.

Singh, A., Sawant, M., Kamble, S. J., Herlekar, M., Starkl, M., Aymerich, E., et al. (2019). Performance evaluation of a decentralized wastewater treatment system in India. Environmental Science and Pollution, 26 , 21172–21188.

Sinha, R. K., Herat, S., Bharambe, G., & Brahambhatt, A. (2010). Vermistabilization of sewage sludge (biosolids) by earthworms: Converting a potential biohazard destined for land disposal into a pathogen free, nutritive and safe biofertilizer for farms. Waste Management and Research, 28 , 872–881.

Smith, R. G. (1995). Water reclamation and reuse. Water Environment Research, 67 , 488–495.

Soni, R., Pal, A. K., Tripathi, P., Lal, J. A., Kesari, K., & Tripathi, V. (2020). An overview of nanoscale materials on the removal of wastewater contaminants. Applied Water Science, 10 , 189.

Spina, F., Anastasi, A., Prigione, V., Tigini, V., & Varese, G. C. (2012). Biological treatment of industrial wastewaters: A fungal approach. Chemical Engineering Transactions, 27 , 175–180.

Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., & Ajayan, P. M. (2004). Carbon nanotube filters. Nature Materials, 3 , 610–614.

SWRCB (2011) Order No. R3-2011-0222: waste discharge requirements NPDES general permit for discharges of highly treated groundwater to surface waters, NPDES NO. CAG993002, California State Water Quality Control Board.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18 , 318–327.

Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. In FAO Irrigation and Drainage Paper (p. 61). Food and Agriculture Organization.

Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow Jr., W. L., Adams, W. J., et al. (2020). Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 65 , 131–159.

Templeton, M. R., Graham, N., & Voulvoulis, N. (2009). Emerging chemical contaminants in water and wastewater. Philosophical Transactions of the Royal Society A, 367 , 3873–3875.

Toze, S. (1997). Microbial pathogens in wastewater. CSIRO Land and Water Technical report 1/97.

Tringe, S. G., Von-Merling, C., Kobayashi, A., Salamov, A. A., Chen, K., & Chang, H. W. (2005). Comparative metagenomics of microbial communities. Science, 308 , 554–557.

Tripathi, V., Tripathi, P. (2017). Antibiotic resistance genes: An emerging environmental pollutant. K.K. Kesari (ed.), Perspectives in Environmental Toxicology , 183-201.

Tsagarakis, K. P., Tsoumanis, P., Chartzoulakis, K., & Angelakis, A. N. (2001). Water resources status including wastewater treatment and reuse in Greece. Water International, 26 , 252–258.

Tytła, M. (2019). Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland—Case study. International Journal of Environmental Research and Public Health, 16 , 2430.

Ungureanu, N., Vlăduț, V., Dincă, M., Zăbavă, B. Ș. (2018). Reuse of wastewater for irrigation, a sustainable practice in arid and semi-arid regions. In Proceedings of the 7th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD), Drobeta-Turnu Severin, Romania, 31 May–2 June. pp. 379–384.

Ungureanu, N., Vlăduț, V., & Voicu, G. (2020). Water Scarcity and wastewater reuse in crop irrigation. Sustainability, 12 (21), 9055.

Upadhyay, K., & Srivastava, J. K. (2005). Application of ozone in the treatment of industrial and municipal wastewater. Journal of Industrial Pollution Control, 21 , 235–245.

US EPA. (2004). Guidelines for Water Reuse 625/R-04/108 . Environmental Protection Agency.

US EPA. (2012). Guidelines for Water Reuse 600/R-12/618 . Environmental Protection Agency.

Vélez, E., Campillo, G. E., Morales, G., Hincapié, C., Osorio, J., Arnache, O., et al. (2016). Mercury removal in wastewater by iron oxide nanoparticles. Journal of Physics: Conference Series, 687 , 012050.

Vergili, I. (2013). Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. Journal of Environmental Management, 127 , 177–187.

Vogelmann, E. S., Awe, G. O., & Prevedello, J. (2016). Selection of plant species used in wastewater treatment. In Wastewater treatment and reuse for metropolitan regions and small cities in developing countries (pp. 1–10). Publisher.

Volesky, B. (1994). Advances in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews (Amsterdam), 14 , 291–302.

Von-Sperling, M., & Chernicharo, C. A. L. (2005). Biological Wastewater treatment in warm climate regions (1st ed.p. 810). IWA Publishing.

Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8 , 55–64.

Webster, G. M. (2010). Chemicals, Health and Pregnancy Study (CHirP). Vancouver, BC: University of British Columbia, Centre for Health and Environment Research (CHER) and School for Occupational and Environmental Hygiene (SOEH). http://www.ncceh.ca/sites/default/files/Health_effects_PFCs_Oct_2010.pdf . Accessed Sept 2019.

Westcot, D. W. (1997). Quality control of wastewater for irrigated crop production. In In Chapter 2 - Health risks associated with wastewater use FAO Water Report (10th ed., p. 86).

WHO (1973) WHO meeting of experts on the reuse of effluents: Methods of wastewater treatment and health safeguards & World Health Organization. Reuse of effluents: Methods of wastewater treatment and health safeguards, report of a WHO meeting of experts [meeting held in Geneva from 30 November to 6 December 1971].

WHO. (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report Series No. 74. World Health Organization, Geneva.

WHO (2003).Copper in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/88).

WHO-World Health Organization. (2006). Guidelines for the Safe Use of Wastewater, Excreta and Greywater . In Wastewater Use in Agriculture (2nd ed.). WHO-World Health Organization.

Winpenny, J., Heinz, I., Koo-Oshima, S., Salgot, M., Collado, J., Hernandex, F., et al. (2010). The Wealth of waste: The economics of wastewater use in agriculture. In Food and Agriculture Organization of the United Nations (p. 35). FAO Water Reports .

World Bank. (2010). Improving wastewater use in agriculture: An emerging priority (p. 169). A report of the Water Partnership Program.

World Resources Institute (WRI), (2020) Aqueduct country rankings. Available online: https://www.wri.org/applications/aqueduct/country-rankings/ Accessed 3 Sept 2020.

Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Ecotoxicology and environmental safety soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141 , 17–24.

Xu, Y. B., Hou, M., Li, Y. F., Huang, L., Ruan, J. J., Zheng, L., et al. (2017). Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere, 170 , 274–281.

Xu, S., Yan, N., Cui, M., & Liu, H. (2020). Decomplexation of Cu(II)/Ni(II)-EDTA by ozone-oxidation process. Environmental Science and Pollution Research, 27 , 812–822.

Yadav, R. K., Goyal, B., Sharma, R. K., Dubey, S. K., & Minhas, P. S. (2002). Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—A case study. Environment International, 28 , 481–486.

Yang, J., Jia, R., Gao, Y., Wang, W., & Cao, P. (2017). The reliability evaluation of reclaimed water reused in power plant project. IOP Conference Series: Earth and Environmental Science, 100 , 012189.

Yaqub, A., Ajab, H., Isa, M. H., Jusoh, H., Junaid, M., & Farooq, R. (2012). Effect of ultrasound and electrode material on electrochemical treatment of industrial wastewater. Journal of New Materials for Electrochemical Systems, 15 , 289–292.

Yuen, H. W., & Becker, W. (2020). Iron toxicity. [Updated 2020 Jun 30]. In: StatPearls [Internet]. StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK459224/ .

Zahmatkesh, M., Spanjers, H., Jules, B., & Lier, V. (2018). A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: Immobilization of fungi on sorghum. Environmental Technology, 39 (16), 2030–2040.

Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9 , e1403.

Zamora, S., Marín-Muñíz, J. L., Nakase-Rodríguez, C., Fernández-Lambert, G., & Sandoval, L. (2019). Wastewater treatment by constructed wetland eco-technology: Influence of mineral and plastic materials as filter media and tropical ornamental plants. Water, 11 , 2344.

Zekić, E., Vuković, Z., & Halkijević, I. (2018). Application of nanotechnology in wastewater treatment. GRAĐEVINAR, 70 , 315–323.

Zhang, H., & Reynolds, M. (2019). Cadmium exposure in living organisms: A short review. Science of the Total Environment, 678 , 761–767.

Zhang, Y., & Shen, Y. (2017). Wastewater irrigation: Past, present, and future. Wastewater treatment: Aims and challenges. Water, 6 (3), e1234. https://doi.org/10.1002/wat2.1234 .

Article   Google Scholar  

Zhou, X., & Wang, G. (2010). Nutrient concentration variations during Oenantheja vanica growth and decay in the ecological floating bed system. Journal of Environmental Sciences (China), 22 , 1710–1717.

Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecological Engineering, 37 , 1460–1466.

Zimmels, Y., Kirzhner, F., & Roitman, S. (2004). Use of naturally growing aquatic plants for wastewater purification. Water Environmental Research, 76 , 220.

Download references

Acknowledgements

All the authors are highly grateful to the authority of the respective departments and institutions for their support in doing this research. The author VT would like to thank Science & Engineering Research Board, New Delhi, India (Grant #ECR/2017/001809). The Author RS is thankful to the University Grants Commission for the National Fellowship (201819-NFO-2018-19-OBC-UTT-78476).

Open access funding provided by Aalto University.

Author information

Kavindra Kumar Kesari and Ramendra Soni contributed equally to this work.

Authors and Affiliations

Department of Applied Physics, Aalto University, Espoo, Finland

Kavindra Kumar Kesari & Janne Ruokolainen

Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Allahabad, India

Ramendra Soni, Jonathan A. Lal & Vijay Tripathi

Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia

Qazi Mohammad Sajid Jamal

Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Allahabad, India

Pooja Tripathi

Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, UP, India

Niraj Kumar Jha

Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India

Mohammed Haris Siddiqui

Department of Forestry, NERIST, Nirjuli, Arunachal Pradesh, India

Pradeep Kumar

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Kavindra Kumar Kesari , Mohammed Haris Siddiqui or Vijay Tripathi .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Kesari, K.K., Soni, R., Jamal, Q.M.S. et al. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water Air Soil Pollut 232 , 208 (2021). https://doi.org/10.1007/s11270-021-05154-8

Download citation

Received : 12 January 2020

Accepted : 25 April 2021

Published : 10 May 2021

DOI : https://doi.org/10.1007/s11270-021-05154-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Bio-computation
  • Environmental pollution
  • Human health
  • Sustainable agriculture
  • Find a journal
  • Publish with us
  • Track your research

Environmental Studies: Water Recycling

Introduction, works cited.

Water shortage is a situation where the available water cannot meet the demands of the population sufficiently. With the continued rise of the population and industrialization, there is much pressure on water sources to serve the growing needs of the people. The rise in demand for water has led to water scarcity due to high usage rates of this natural resource. But because water is a basic commodity for all organisms, the current water scarcity is at the moment one of the potential sources of conflict in the world today (Pereira et al., 20).

So far, humans have exhausted all the natural water sources available, including aquifers, yet most countries have not been able to develop methods of recycling water.

Effects of global warming have also led to a change in climate change leading to drought and hunger. Due to change in weather patterns, rivers and lakes have dried up leading to the water crisis, which has eventually created other problems since human depend on water for economic and domestic uses. Today, people are forced to move long distances in search of water, which is a basic commodity.

Water shortage has led to regional and community conflicts when people fight over control of the water sources leading to deaths and displacement of people from their areas of settlement. Ethnic fights, political interference, and conflicts in many parts of the world have led to the emergence of economic, social, psychological, and structural issues. Ethnic and religious tensions over depleting resources have been accompanied by competition and political conflicts between different communities (Filho, 14).

As such, governments have obligations to protect its population against any emerging issues that arise due to water shortage (Marsalek, 8).

It has been observed that water shortage contributes more problems than just drought and hunger; the government should, therefore, undertake strategies to address the same considering the great implication that water shortage can have in an economy (Weaver, 8). The government can help solve the issue of water shortage by creating awareness on water recycling, protecting existing water bodies, and doing desalination to have more clean water.

There is a need to solve the water shortage problem as a matter of urgency because of the following reasons. Firstly, water recycling will prevent the outbreak of water-related conflicts and deaths, which is usually caused by the struggle of water shortage (Weaver, 23). Secondly, constant food supply that is largely dependent on the water will be sustained, thereby eliminating hunger and starvation that leads to deaths and stagnation of economic progress of a country.

Thirdly, social problems associated with lack of water as well as psychological impacts can be solved by giving people access to potable water (Pereira et al., 43). It is the role of the government to make the economy of a country stable by making its population self-sufficient; water recycling ensures that the existing water sources are well protected. Finally, the government has a responsibility of protecting human rights that include access to clean and safe water as espoused in the MDG goals (Filho, 20).

Different countries face varying challenges in as far as the provision of clean water to its population is concerned depending on its economic development level and geographic location.

Notwithstanding this, any government must provide access to clean water to its citizens, and this is best achieved when awareness of water recycling is emphasized. It is thus the recommendation of this paper that water recycling is every government priority to ensure safe and clean water. Once access to clean water is achievable economic, social, and political stability will also be guaranteed.

Filho, Leah. The Economic, Social and Political Elements of Climate Change.  Berlin: Springer, 2010. Print.

Marsalek, Jiri. Urban water cycle processes and interactions . New York: Taylor and Francis, 2008. Print.

Pereira, Santos., Cordery, Ian., & Lacovides, Lacovos. Coping with Water Scarcity:  Addressing the Challenges . Berlin: Springer, 2009. Print.

Weaver, Alex. Exploring sustainability science: a southern African  perspective .Johanesburg: African Sun Media, 2008. Print.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2020, April 27). Environmental Studies: Water Recycling. https://studycorgi.com/environmental-studies-water-recycling-essay/

"Environmental Studies: Water Recycling." StudyCorgi , 27 Apr. 2020, studycorgi.com/environmental-studies-water-recycling-essay/.

StudyCorgi . (2020) 'Environmental Studies: Water Recycling'. 27 April.

1. StudyCorgi . "Environmental Studies: Water Recycling." April 27, 2020. https://studycorgi.com/environmental-studies-water-recycling-essay/.

Bibliography

StudyCorgi . "Environmental Studies: Water Recycling." April 27, 2020. https://studycorgi.com/environmental-studies-water-recycling-essay/.

StudyCorgi . 2020. "Environmental Studies: Water Recycling." April 27, 2020. https://studycorgi.com/environmental-studies-water-recycling-essay/.

This paper, “Environmental Studies: Water Recycling”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: October 17, 2020 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

Drinking Water Plant South-West Moscow – A challenge for a clean solution

After international, functional invitation for tenders and comparison of the performances offered, the city of moscow signed on august 7, 2003 the project implementation contract for organising, financing, construction and operation of the drinking water plant south-west moscow with the german company wte wassertechnik gmbh. .

by Markus Spies

Included in the scope of supply are the complete design, the turn-key construction, the financing and the operation of the drinking water plant for a period of 10 years beginning after commissioning on January 1st, 2007. Measured by European standards, water supply to the continuously growing population of Moscow, Russia’s capital, and industrial water demand have generated a unique water supply system of enormous proportions: a drinking water collection area spanning 65,000 km2, four central waterworks of a total daily output of nearly 7millionm3 of clear water, 18 pumping stations and 13 drinking water storage tanks. Moscow’s central water supply is based on a more than 100 years old tradition and is one of the oldest systems in Europe.For decades, its complex overall system has been monitored, serviced, repaired and continuously expanded by Moswodokanal employing 15,000 staff.Considering in particular the metropolis and its surrounding areas background of rapid growth, counting at present a population of more than 12 million, the unlimited maintenance of security of supplies deserves highest respect, in particular because comparable systems are hardly existing worldwide. It is the result of far-sighted infrastructural planning.

Images should have a resolution of 400*400px resolution, square format recommended.

close

Send message

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essay Examples >
  • Essays Topics >
  • Essay on Water

Good Water Recycling Essay Example

Type of paper: Essay

Topic: Water , Soil , Treatment , World , Recycling , Drinking , Alcoholism , Technology

Words: 2000

Published: 02/23/2020

ORDER PAPER LIKE THIS

INTRODUCTION

Water recycling is a critical element for conservation of world’s water resource. Recycled water or reclaimed water is the wastewater, which is being treated to remove solids and certain impurities. This treated water is then used for extensive irrigation purposes, landscape irrigation, toilet flushing, industrial purposes and replenishing ground water. All water on Earth is recycled, but “recycled water” or “reclaimed water” means the wastewater, which is sent from homes and industries through pipelines to treatment plants. The process of treating wastewater or gray water is called Water Recycling. Sometimes recycled water is used to benefit ecosystem and improve aesthetics. On treating gray water, it is treated to meet the quality of water requirements for irrigation and other purposes. In other words, they are not treated enough to meet the quality standards for drinking water. Natural water cycle has facilitated water recycling on Earth for millions of years. Water recycling process may be characterized into two categories as planned or unplanned. One classic example of unplanned water recycling system is water from Colorado River and Mississippi river. Wastewater is collected upstream in these rivers and they undergo treatment several times, before the last downstream user withdraws water from pipelines. Planned water recycling projects are those that are designed with the specific goal to benefit through recycled water. Water harvesting is different from water recycling because, water harvesting involves simple methods like building storage tanks to collect rain and storm water. Whereas in water recycling, a complex mechanism is involved to ensure that, any hazardous material and highly degraded material are removed.

NATURAL WATER CYCLE

Natural water cycle has been the base for the evolution of water recycling technique. It is otherwise called as the hydrologic cycle or H2O cycle. This cycle describes the continuous movement of water on, above and below the surface of Earth. Many cities and countries recycle sewage water for irrigation and landscaping. However, they have been treated to the standards of drinking water, some of the communities are resistant towards use of recycled water. So indirect potable technique is widely used, since people feel more comfortable if river is a water source.

WORKING MECHANISM OF WATER RECYCLING SYSTEMS:

Water recycling treatment involves a series of water treatments in order to put them to use. Each level of treatment makes the water suitable for use for various purposes. However, recycled water is not used for drinking purposes. Following is the flow chart of a basic water recycling system. Indirect potable reuse is a system, which discharges water into a water body before reuse. Direct potable system discharges water for drinking directly after treatment. Direct potable system is generally not used in America but used safely in Namibia (Africa). The US Environmental Protection Agency regulated many aspects of drinking water quality and wastewater treatment. In 1992, EPA has released a technical document entitled “Guidelines for Water Reuse” which has information like summary of state requirements and guidelines for treatment and use of recycled water. Although most of the water recycling projects is designed to meet nonpotable water demands, there are some projects, which use recycled water for indirect potable uses. These projects involve recharging ground water aquifers and surface reservoir augmentations with recycled water. In ground water recharge projects, recycled water is used to inject into ground water aquifers and to augment ground water supplies and prevent intrusion of salt water in coastal areas. New technologies subject wastewater through three more stages namely: micro filtration, reverse osmosis and ultraviolet. By this way, impurities in the order of micron and nanometers can also be removed, thereby making it eligible for drinking water purpose. In future, if regulations are changed and recycled water proved to be purified to drinking water standards, they can be pumped directly into homes and industries.

ENVIRONMENTAL BENEFITS OF WATER RECYCLING

- Water recycling helps in decreasing diversion of fresh water from ecosystems - Decreases or eliminates discharge of wastewater into sensitive water bodies like lakes, estuaries or oceans. - Recycled water helps in enhancement or creating wetlands. - Water recycling can reduce and prevent pollution

DISADVANTAGES OF WATER RECYCLING

- Cost of recycling water is more, but still industries provide them at lower cost to promote the use of recycled water for nonpotable uses. - Perception of people regarding recycled water is negative. It is assumed that all recycled water is hazardous and dangerous to use, since its tagged nonpotable - One of the key disadvantages of recycled water is the health hazards it can cause due to the bacteria it may contain. Recycled water may contain E. coli or other bacteria, which can travel to wherever water is directed. On using for food irrigation, it can cause food-borne illness.

DIFFERENT WATER RECYCLING SYSTEMS

There are different ways to recycle wastewater. Recycling is possible in homes also. It should be noticed that, use of recycled water is illegal in some states like North Carolina. Even water from sinks and showers are considered as sewage water. Following are some of the simple and common methods for recycling water. - Waste Water Filtration System: This system uses a series of filters in a reservoir, to separate all solid and suspended matter in wastewater. They are most commonly used in association with rain barrel systems where sticks, leaves, stones, mud get collected. They can also be used in conjunction with sinks and showers, in order to monitor the use of this recycled water for purposes other than flushing toilets. - Unfiltered Waste Water Pump Systems: Unfiltered pump system is the most commonly used setup for water recycling in homes. This method cannot be used with rain barrels, because it may get clogged with sediments. It can be connected to bathroom sinks and showers, to reuse water in toilets and gardens. In this method, water enters a reservoir with a pump, which will send water to toilet. Suggested only if organic soaps are used. - Passive Grey water System: This is just a simple technique to reuse wastewater. If you carry a bucket to the shower, it will collect lot of water after bath. This collected water can then be used to flush toilet without any further treatments. - Custom Grey water Systems: As the name suggests, water-recycling system can be customized as per requirement. It can specify where wastewater goes and use it for irrigation at timed intervals. It can also monitor how much water is recycled. These are just a few examples of wastewater recycling techniques. A large variety of recycling systems are prevalent now.

ADVANCEMENTS IN WATER RECYCLING SYSTEMS

Large leaps have been taken in advancing water-recycling technologies. Recycling Water from Shower: In space, astronauts use same recycled water repeatedly throughout their course of time in space. This is possible with the use of water recycling as we shower. It works as a closed loop system. As water falls from the shower and goes into the drain, it is instantly purified to drinking water standards and again pumped back through the shower. Since water is hot already, it needs to get slightly heated. This system, which is used in space, can also be used on Earth. Membrane Separation System: This system offers the merits of space and energy savings, direct control of water purity, relatively low operating cost and no toxic chemical processing. This method is effective and efficient. It can recycle and purify water at considerably faster rates compared to conventional methods. Microfiltration: Here, water is purified through microfiltration technology, which can remove impurities up to 0.5 microns. It saves up to one fourth of the space occupied by a conventional water-recycling device. Reverse Osmosis: Reverse Osmosis or popularly known as RO is a widely used technique to purify water and use for drinking purposes. It detoxifies water and removes impurities up to 0.1 nanometers, which is not possible with other methods. Grey water recycling is still an undeveloped technology. Water treatment technologies in future may be developed to purify heavily contaminated water to suitable standards, but still its impact on environment will be high and justifiable on industrial scale.

WATER REUSE IN COLORADO

Reclaimed water has been used for landscape irrigation in Colorado in places like Colorado Springs and Aurora since 1950s and early 1960s respectively. Reuse has become common in cities like Colorado Springs, Aurora, Denver and Westminster. Reused water makes up about 40% of Las Vegas Valley water resource. Of the remaining water resource, the Colorado River provides 90% and groundwater provides 10%. Majority of water is used outdoors at residences.

Policy Regarding Recycled Water in Colorado:

- Expand return flow to Colorado River to increase Nevada’s credit for subsequent withdrawal. - Expand the use of recycle water in the Las Vegas Valley where large turf and industrial demands exist. - Maximize the use of Recycled Water in areas of Southern Nevada where return flow to the Colorado River System is not practical, including the testing of aquifer storage and recovery. - Develop a salt management strategy to address the accumulation of salts that are detrimental in Recycled water. - Continue to advance the research of the health and safety implications of Recycled water - Prohibit the use of treated or untreated Gray water in the Las Vegas Valley and prohibit its use outside the valley where there is reasonable potential for return flow to the Colorado River system or other Water Recycling programs. - Educate the public about our local water cycle and the benefits of Recycled Water. Denver Water supplies water for the city and country of Denver, Colorado and 70 suburban cities. As the largest water recycling facility of Colorado, treats up to 30 million gallons of effluent a day coming from the nearby metro waste water reclamation facility. This water is used for nonpotable demands. To supply drinking water, Denver Water treats water taken from South Platte River and Colorado’s Western slope of the Rockies. The water recycling plant diverts effluents from wastewater treatment plant, treats water from municipal sewage and industrial sources to a standard, which is safe to discharge into streams and rivers. For high-level treatment, water is tested for p H, turbidity, chlorine content and organics.

CONCLUSION:

Water recycling may not eliminate water scarcity across the world but it is definitely an effective solution for conservation of water for our future generations. In spite of the disadvantages of water recycling, its advantages takeover the necessity to develop this technique. Even if reused water cannot be put to use for drinking purposes, they serve a great deal as a source for non-potable utilities like cooling in industries, irrigation purposes, landscaping, betterment of ecological system, for recharging ground water aquifers, toilet flushing, etc., It is important to educate the public about the water recycling technique and remove the perception that, recycled water is hazardous.

- Guidelines for Water Reuse. US EPA Office of Technology Transfer and Regulatory Support. EPA/625/R-92/004. September 1992 - Municipal Wastewater Reuse: Selected Readings on Water Reuse. Office of Water (WH-595) EPA 430/09-91-002. September 199. - Layperson’s Guide to Water Recycling and Reuse, published in 1992 by the Water Education Foundation, Sacramento, California. - Water from Water: Recycling, produced in 1995 by National Water Research Institute, Fountain Valley, California. - Water in an Endless Loop, produced in 1997 by WateReuse Foundation, Sacramento, California. - http://www.epa.gov/region09/water/recycling/ - www.denverwater.org/recycle/project_overview.html - Water Recycling Comes of Age in Silicon Valley, audio report by Amy Standen for Quest Northern California on July 19, 2013. - http://greenliving.lovetoknow.com/Household_Waste_Water_Recycling_Systems - http://www.nasa.gov/home/hqnews/2004//HQ_04372_water_recycling.html

double-banner

Cite this page

Share with friends using:

Removal Request

Removal Request

Finished papers: 1272

This paper is created by writer with

ID 250166231

If you want your paper to be:

Well-researched, fact-checked, and accurate

Original, fresh, based on current data

Eloquently written and immaculately formatted

275 words = 1 page double-spaced

submit your paper

Get your papers done by pros!

Other Pages

Bin reports, nickel reports, breakthrough reports, repayment reports, molar reports, admin reports, dose reports, rim reports, phenotype reports, video games college essays, the concepts of modernism essay, example of mosaic culture in san diego california essay, essay on the policy called the universal back ground check its on the federal level, genesis creation story and environmental hermeneutics essays example, free research paper on the internet is not a human right, finance essay sample, good essay on disease design paper, good essay on the unlikely disciple, example of argumentative essay on effectiveness of non pharmaceutical approaches to mental illness, example of analytical essay 2, vasovagal syncope essays example, legal and ethical issues of work place monitoring research paper sample, example of course work on painter versus bannisters, free chemical biological and nuclear agents and incidents research paper example, bartlett vs mutual pharmaceutical case brief and analysis research paper samples, an investigation into whether bankers bonuses are effective in organizations report samples, good essay about order of operations, what can and should the government do about monopoly essay example, changes in family structure in the us essay, example of essay on jack daniel media plan, good example of should students wear uniforms research paper, free essay about forex trading simulation, example of my interests my goals personal statement, the last man on earth 1964 movie review samples, example of essay on outline for the research paper on the social issue of bullying, steppe essays, corson essays, steroid essays, stoppard essays, voting rights act of 1965 essays, what goes around comes around essays, vivi essays.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

Essay on Importance of Water for Students and Children in 1500+Words

Essay on Importance of Water for Students and Children in 1500+Words

In this essay on importance of water for students and children in 1500+ word, we have covered its importance, use, sources, recycling, and saving water.

Table of Contents

Introduction (Essay on Importance of Water)

Water is one of the essential resource on Earth that all plants and animals sure require surviving. If there were no water, there were not to be life on Earth. Besides drinking it to survive, people have many other uses of water.

Uses of water in daily life –

  • Washing clothes
  • Washing dishes for cooking and eating such as pans, crockery, and cutlery
  •  Keeping plants alive in parks and gardens
  • Keeping homes and communities clean
  • Recreation activities, such as swimming pools

Water is essential for the healthy growth of crops and agricultural resources and uses to produce many products. The most important thing is that the water that people drink and use for other hygienic purposes requires a pure and clean. It indicates that the water must be free from germs and chemicals and be cleaning (not turbid).

Germs that cause disease and chemicals contaminate the water. and while people drink it or come in contact with it differently, it causes sickness and diseases. It says that water is not safe to drink if it is not potable. Throughout history, there have been many deaths people because pathogenic germs have spread in the community through contaminated water.

One of the reasons why it happens nowadays is that people in many countries take care of the availability of pure drinking water. Water supplies are routinely testing for germs and chemicals that may contaminate water.

While the water is contaminated and not safe to drink, it requires treatment. All measures and operations are taking to purify the drinking water are called the water treatment process.

Sources of Water

There are many ways to collect water. The primary sources are:

Groundwater

Groundwater refers to any source of water under the soil layer or between rocks and other materials. Most communities receive water from underground aquifers or rock formations capable of storing large amounts of freshwater.

Only 4 percent of the water on Earth is considering freshwater, and we find only 30 percent of this small amount as groundwater. Pollution abuse threatens this valuable resource.

Surface water

Surface water sources include any above-ground water harvest, such as rivers, lakes, ponds, and oceans. Underground aquifers also feed some sources of surface water.

Surface water accounts for around 75 percent of the water. This is water that falls to the ground as rain or hail.

While collects this water from a particular area called the catchment, it then stores the water in a natural or artificial (artificial) barrier called a dam or reservoir. The catchment areas are usually distant from the cities to reduce the likelihood of water contamination.

Some laws control human activities, such as agriculture and recreation in catchment areas and dams, to ensure that it keeps water resources in a potable state.

Ocean water

Although oceanic water accounts for almost 90 percent of all water on Earth, it is not a viable source of drinking water unless removing salt and other contaminants. Desalination, the process of salt removal from water, is rapidly growing in practice.

For removal of salt and other microscopic particles from water, reverse osmosis is the most promising method. This process forces salty water through filters with microscopic pores that remove salt and other microbes. Reverse osmosis requires large amounts of energy, which makes it a very costly process.

Glacier and Icecaps melting

With 03 percent of terrestrial water considered freshwater, 70 percent of this small amount is now enclosed in glaciers and ice caps.

Theoretically, Glacier can be melted and used, but the amount of energy needed to melt and transport vast amounts of ice makes it economically impractical. Glaciers and ice caps also play a significant role in regulating the Earth’s climate and global temperatures, so that their role is significant.

It locates them where underground water flows naturally from the ground without the use of openings, wells or pumps. Sources often occur at the bottom of the hill or on sloping terrain.

The water catchment areas and rock holes

Sometimes, massive rocky outcrops contain low areas in which it traps water. These low areas are good natural dams.

Excavated dams

Excavated dams are created by catching the ground to get a large, shallow hole. These dams are sometimes making at the bottom of the slope to help collect water.

This is beneficial only in areas where the soil does not allow water to soak quickly through the ground.

For example- clay soils that do not allow the outflow of water are known as impermeable.

If the community wants a dam in an area where the soil is not impermeable, it can be done by digging the hole and lining it with clay or impermeable linings, such as concrete or heavy plastic. Farmers often use excavated dams to supply water resources.

Importance of Water recycling

The water on Earth today is the same water that was here when the Earth formed. This is thanks to recycled water, both naturally occurring and because of human technology. The Earth soaks water again naturally.

However, water recycling in people uses method to speed up the process through practices such as the re-use of wastewater for purposes such as irrigation, toilet flushing, or filling the groundwater pool.

Another common form of recycling water is industrial recycling, in which the industrial machines re-use “waste” water on-site for processes such as cooling. One of the key benefits of water recycling is that it reduces the need to remove water from natural habitats, such as wetlands.

The environmental benefits of water recycling

When recycling water uses, this means there is no need to draw water from other sources. Many areas where pure water abounds are delicate ecosystems that suffer when their water removes. When water recycles, it makes it easier for places like a swamp to maintain water supplies.

More advantages of wastewater recycling

Repeatedly recycling water not only prevents its removal from sensitive environments but also prevents sewage from entering waters such as the ocean or river.

Recycling of water consumes the dirty water such as sewage and uses it again, instead of directing it to the nearest river or ocean, where it can spread pollution and disrupt water life.

It increases the benefits for irrigation

While wastewater can be severely damaging to rivers and oceans, it should be recycled that is beneficial for irrigation and fertilizing fields. Recycled water contains high levels of nitrogen harmful to aquatic organisms and is an essential nutrient for plants.

It improves wetlands

Wetlands provide many environmental benefits , such as the accommodation of wild fauna and flora, reducing floods, improving water quality, and providing a safe breeding site for fish populations. Many times recycled, it can add water to the dried wetlands, helping them to grow again in a lush environment.

Provides future water supply

When you take water from rivers and oceans to use for things like irrigation and wetlands, this consumes some drinking water supplies.

When it recovers and use water, this minimizes the potential loss of drinking water. This leaves the maximum amount of water that future generations can use for their drinking needs.

The importance of saving water

Water is essential for surviving human life. Although the supply seems abundant, water is not an unlimited resource, especially fresh drinking water, which is the most necessary for human survival. 

There are also economic benefits because it saves energy and equipment directly because of water conservation activities.

Agricultural protection

In the central valley of California, the increased urbanization caused the drainage of valuable aquifers. Further, it consumes more surface water from rural areas.

The American geological survey reports that the Tulare Valley, the hottest and driest part of the Central California Valley shows declines in groundwater levels and the associated storage of groundwater.

Environmental factors

The vast majority of lives on Earth indirectly depends on water supply. Conservation also protects the balance of life on Earth that would be disrupted by reducing water supplies. Overuse of water threatens other forms of lives that help us maintain.

For example, the US Reclamation Office reports that in the last 100 years, about 22 species of fish have died extinct in 16 western states, partly because of a change in habitat.

Some habitat changes are because of the expansion of human populations, and the same population growth has also increased the water demand from these areas.

Transportation cost

Water is not processed and delivered to our home for free. Every time we use water, the local company charges an amount. The greater the demand for water, the higher the amount. By saving water, it will save money in terms of both the quantity used and the unit price.

Energy consumption

Excessive water consumption leads to excessive consumption of another non-renewable resource, energy. It must heat the water in the home for many uses, such as cleaning and bathing, and this requires energy.

Also, the local water company must consume energy to process and supply water to the home. Thus excessive water consumption also requires more energy from the public utility company.

More water consumption causes more uses of infrastructure and technology:

Saving the water reduces the need for creating and maintaining water treatment and supply systems, such as wastewater treatment plants and septic systems.

More water consumption requires more use of this equipment and needs to be replaced. Besides, excessive water consumption can overwhelm local sewage treatment plants, which causes some water to be pushed before complete purification, which may pose a health risk.

Similarly, an overloaded septic system can cause untreated water leaking into the surrounding soil.

We can conclude that all living organisms on Earth depend entirely on water, and if the water they consume is not clean, it harms these organisms. Water refinery systems partially solve the problem of people outside such a barrier.

However, people in non-developed countries do not have such refining systems. They consume water directly from their natural sources, just like animals and plants. That is why all-natural water sources must be clean so that all living organisms on the planet have access to clean water.

Leave a comment Cancel reply

Essay on Water Recycling | Techniques | Wastewater Management

water recycling essay

Here is an essay on ‘Water Recycling’ for class 8, 9, 10, 11 and 12. Find paragraphs, long and short essays on ‘Water Recycling’ especially written for school and college students.

Essay # 1. Meaning of Water Recycling:

While recycling is a term generally applied to aluminum cans, glass bottles, and newspapers, water can be recycled as well. Water recycling is reusing treated wastewater for beneficial pur­poses such as agricultural and landscape irrigation, industrial processes, toilet flushing, and re­plenishing a ground water basin (referred to as ground water recharge).

Water is sometimes recycled and reused onsite; for example, when an industrial facility recycles water used for cooling processes. A common type of recycled water is water that has been re­claimed from municipal wastewater, or sewage. The term water recycling is generally used syn­onymously with water reclamation and water reuse.

Through the natural water cycle, the earth has recycled and reused water for millions of years. Water recycling, though, generally refers to projects that use technology to speed up these natural processes. Water recycling is often characterized as “unplanned” or “planned.”

A common exam­ple of unplanned water recycling occurs when cities draw their water supplies from rivers, such as the Colorado River and the Mississippi River, that receive wastewater discharges upstream from those cities. Water from these rivers has been reused, treated, and piped into the water supply a number of times before the last downstream user withdraws the water. Planned projects are those that are developed with the goal of beneficially reusing a recycled water supply.

American Water Works Association, 1999

Essay # 2. Benefits of Recycled Water:

Recycled water can satisfy most water demands, as long as it is adequately treated to ensure water quality appropriate for the use. In uses where there is a greater chance of human exposure to the water, more treatment is required. As for any water source that is not properly treated, health problems could arise from drinking or being exposed to recycled water if it contains disease-causing organ­isms or other contaminants.

The US Environmental Protection Agency regulates many aspects of wastewater treatment and drinking water quality, and the majority of states in the US have established criteria or guidelines for the beneficial use of recycled water.

In addition, in 2004, EPA developed a technical document entitled “Guidelines for Water Reuse,” which contains such information as a summary of state requirements, and guidelines for the treatment and uses of recycled water. State and Federal regu­latory oversight has successfully provided a framework to ensure the safety of the many water recycling projects that have been developed in the United States.

Recycled water is most commonly used for nonpotable (not for drinking) purposes, such as agriculture, landscape, public parks, and golf course irrigation. Other nonpotable applications include cooling water for power plants and oil refineries, industrial process water for such facili­ties as paper mills and carpet dyers, toilet flushing, dust control, construction activities, concrete mixing, and artificial lakes.

Although most water recycling projects have been developed to meet nonpotable water de­mands, a number of projects use recycled water indirectly for potable purposes. These projects include recharging ground water aquifers and augmenting surface water reservoirs with recycled water. In ground water recharge projects, recycled water can be spread or injected into ground water aquifers to augment ground water supplies, and to prevent salt water intrusion in coastal areas.

For example, since 1976, the Water Factory 21 Direct Injection Project, located in Orange County, California, has been injecting highly treated recycled water into the aquifer to prevent salt water intrusion, while augmenting the potable ground water supply.

While numerous successful ground water recharge projects have been operated for many years, planned augmentation of surface water reservoirs has been less common. However, there are some existing projects and others in the planning stages.

For example, since 1978, the upper Occoquan Sewage Authority has been discharging recycled water into a stream above Occoquan Reservoir, a potable water supply source for Fairfax County, Virginia. In San Diego, California, the Water Repurification Project is currently being planned to augment a drinking water reservoir with 20,000 acre-feet per year of advanced treated recycled water.

Essay # 3. Environmental Benefits of Water Recycling:

In addition to providing a dependable, locally-controlled water supply, water recycling pro­vides tremendous environmental benefits. By providing an additional source of water, water recycling can help us find ways to decrease the diversion of water from sensitive ecosystems. Other benefits include decreasing wastewater discharges and reducing and preventing pollution. Recycled water can also be used to create or enhance wetlands and riparian habitats.

a. Water Recycling Can Decrease Diversion of Freshwater from Sensitive Ecosystems:

Plants, wildlife, and fish depend on sufficient water flows to their habitats to live and reproduce. The lack of adequate flow, as a result of diversion for agricultural, urban, and industrial purposes, can cause deterioration of water quality and ecosystem health. Water users can supplement their demands by using recycled water, which can free considerable amounts of water for the environ­ment and increase flows to vital ecosystems.

b. Water Recycling Decreases Discharge to Sensitive Water Bodies:

In some cases, the impetus for water recycling comes not from a water supply need, but from a need to eliminate or decrease wastewater discharge to the ocean, an estuary, or a stream. For example, high volumes of treated wastewater discharged from the San Jose/Santa Clara Water Pollution Control Plant into the south San Francisco Bay threatened the area’s natural salt water marsh.

In response, a $140 million recycling project was completed in 1997. The South Bay Water Recycling Program has the capacity to provide 21 million gallons per day of recycled water for use in irriga­tion and industry. By avoiding the conversion of salt water marsh to brackish marsh, the habitat for two endangered species can be protected.

c. Recycled Water may be Used to Create or Enhance Wetlands and Riparian (Stream) Habitats:

Wetlands provide many benefits, which include wildlife and wildfowl habitat, water quality improvement, flood diminishment, and fisheries breeding grounds. For streams that have been impaired or dried from water diversion, water flow can be augmented with recycled water to sustain and improve the aquatic and wildlife habitat.

Water Recycling Can Reduce and Prevent Pollution-When pollutant discharges to oceans, rivers, and other water bodies are curtailed, the pollutant loadings to these bodies are decreased. Moreo­ver, in some cases, substances that can be pollutants when discharged to a body of water can be beneficially reused for irrigation.

For example, recycled water may contain higher levels of nutri­ents, such as nitrogen, than potable water. Application of recycled water for agricultural and landscape irrigation can provide an additional source of nutrients and lessen the need to apply synthetic fertilizers.

Essay # 4. Future of Water Recycling:

Water recycling has proven to be effective and successful in creating a new and reliable water supply, while not compromising public health. Non-potable reuse is a widely accepted practice that will continue to grow. However, in many parts of the United States, the uses of recycled water are expanding in order to accommodate the needs of the environment and growing water supply demands. Advances in wastewater treatment technology and health studies of indirect potable reuse have led many to predict that planned indirect potable reuse will soon become more common.

While water recycling is a sustainable approach and can be cost-effective in the long term, the treatment of wastewater for reuse and the installation of distribution systems can be initially expensive compared to such water supply alternatives as imported water or ground water. Insti­tutional barriers, as well as varying agency priorities, can make it difficult to implement water recycling projects. Finally, early in the planning process, agencies must implement public outreach to address any concerns and to keep the public involved in the planning process.

As water demands and environmental needs grow, water recycling will play a greater role in our overall water supply. By working together to overcome obstacles, water recycling, along with water conservation, can help us to conserve and sustainably manage our vital water resources.

Suggested Water Recycling Treatment and Uses'

Related Articles:

  • The Best Essay on Wastewater Treatment | Wastewater Management
  • 4 Main Objectives of Pre-Chlorination | Wastewater Management
  • Essay on Anaerobic Digestion: Process and Advantages | Wastewater Management
  • Essay on Anaerobic Digestion | Wastewater Treatment | Waste Management

Essay on Recycling for Students and Children

500+ words essay on recycling.

Recycling is a method of procedure that includes the collection and breaking down of waste material to create something new out of it. The process was introduced sot that the non-biodegradable materials can be melted or break down to create something useful. After the effects of global warming and pollution have become known to men the process of recycling has become more important.

Essay on Recycling

Why We Need Recycling?

We need recycling for many reasons. But most importantly, it will help us to save our planet. Besides, recycling saves the earth by facilitating the reprocess of paper which will save millions of trees.

Also, recycling saves a lot of energy because many things that we recycle can easily be converted into virgin materials. In addition, it saves a lot of resources too.

Moreover, recycling reduces the burden of the environment. As we save energy the number of greenhouse gases and oxides are produced in less quantity. Because most of the toxic gases are produced by factories.

In addition, recycling reduces the amount of waste, that takes years to decompose. Also, the recycled material can be sold. We use this recycled material for the manufacturing of many new products. So, ultimately recycling saves money.

Get the huge list of more than 500 Essay Topics and Ideas

The Process of Recycling

The various materials that we recycle have to go through a process that refines and purifies them. Besides, different materials go through a different process and in this topic we will discuss the recycling process of various materials.

Paper- It is the most used material on the earth. Paper is made up of two materials water and wood. For recycling paper firstly they break it down in small pieces and dissolve it into water. After that, they add chemicals that filter out the ink and dirt from it. In addition after filtering the paper takes the form of a mush called the pulp and this pulp is later converted into clean paper.

Metals-  The metals are first shredded into small pieces and then they were melted and after that remolded into new shapes.

Glass- The recycling of glass is the easier they just break it into pieces and then they melt it and recast them.

Plastic- They also follow the same process as plastic. But, the process of plastic recycling is a little bit complex because they have to sort out the different types of plastics. As there is a diverse variety of plastic with different properties.

How Can We Contribute to Recycling?

Almost everything that we use can be recycled whether it is household materials like paper, plastic, metal, glass, furniture, toys, artifacts, vehicles, etc. Besides, opt for things from the market that can easily be recycled. Also, try to use merchandise that is made up of recycled products.

In addition, sort your waste and dump your recyclable waste in the recycle bin so that the authorities can recycle it.

To Sum it up, recycling is a small step by humans to save the environment . But this small step is very effective in the long run. Also, before throwing away the waste we should check it to see if there is a recyclable product in it or not.

FAQs about Essay on Recycling

Q.1 List some benefits of recycling. A.1 There are many benefits to recycling like:

  • It reduces the amount of waste produced by us.
  • Conserves natural resources such as water, wood, and minerals.
  • It prevents the overuse of resources and helps in preserving them.
  • In addition, it saves energy.

Q.2 Give an important fact related to recycling. A.2 An important fact can be that recycling reduces the amount of waste which goes to landfills. Also, lesser density in landfill means less amount of methane and other gases is released into the air.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

  • Share full article

Advertisement

Supported by

Essay; Bailing Out Moscow

By William Safire

  • Feb. 25, 1988

Essay; Bailing Out Moscow

We have just been told by a well-placed informant inside the Kremlin that the Soviet Union is not the economic power our intelligence analysts have long thought it was.

Throughout the Reagan years, our experts have assumed that Soviet growth averaged slightly over 3 percent yearly. That is a vital statistic: we then put a price each year on what we know the Soviet military machine cost, and get what we hope is a clear idea of what percentage of its economy Moscow is devoting to armament.

That's just about the most important intelligence number of all. In the 70's, a ''Team B'' of outsiders was brought in by the C.I.A. to challenge the conventional wisdom, and doubled the previous estimate to 13 percent in the Soviet Union. That laid the basis for our own increased defense spending, which now amounts to 6 percent of our gross national product.

In a little-noted passage of his long speech last week to his Central Committee, Mikhail Gorbachev made a stunning revelation that kicks our estimates into a cocked hat.

He pointed out that during the Brezhnev years, economic growth had been artificially hiked by the sale of oil at high prices (the U.S.S.R. is the world's largest producer) and the accelerated sale of vodka (Soviet spending on alcohol may have reached 10 percent of total output, compared with less than 2 percent of ours).

''If we purge economic growth indicators of the influence of these factors,'' said Mr. Gorbachev, ''it turns out that, basically, for four five-year periods there was no increase in the absolute growth of the national income and, at the beginning of the 80's, it had even begun to fall. That is the real picture, comrades!''

No doubt the current Kremlin leader is trying to make the present bad economic picture look better by saying the old days under his predecessor were really much worse. But we should allow for the possibility that, concerning the 80's at least, Mr. Gorbachev may be telling the truth.

If that is the real picture, comrades, we have to do some fast reassessing of our own. During the 80's, as the price of oil has been cut in half, and the Soviet gulping of booze has been restricted, the total Soviet output is not likely to have risen much, if at all, from what Mr. Gorbachev says was its falling state in 1980.

Here is what that new assessment leads us to deduce: the Soviet economy has been stagnant (or possibly declining) for seven years - most definitely not growing steadily at the over-3-percent rate per year our analysts had been assuming. That means our assessment of total growth of about one-fourth in this decade has been egregiously mistaken. That supposedly seven-foot giant turns out to be closer to five feet tall, same as he was in the Brezhnev years.

Apply that new assessment to arms control. The way we estimate Soviet arms expenditures is by simple bean-counting, mainly from satellites, and that total is not affected. What does change is the percentage of the output devoted to arms; if it was 14 percent by the old assessment, it must be an unbearable 20 percent in the new reality Mr. Gorbachev reveals.

Thus, under pressure to reduce arms spending, he seeks treaties; forced to cut losses, he announces withdrawal from Afghanistan and may offer to reduce subsidies in Central America; faced with the prospect of having to match serious Star Wars spending, he rails at the idea of strategic defense.

Apply that no-growth, one-fourth-smaller fact to economic diplomacy. It explains why the Russians finally settled the old Czarist debt for a dime on the dollar, paving the way for a recent $77 million Soviet bond issue. That's also why the Kremlin will be seeking entry into the International Monetary Fund, GATT and the World Bank at the next meetings (in West Berlin) this fall. Soviet Communism is starving for capital.

Our European allies are rushing to lend Moscow money and to subsidize pipelines, while accommodationists here want to offer the Russians most-favored-nation status on trade. Commerce and State Department detenteniks await only vague ''economic reforms'' to end our opposition to Soviet entry into Western credit markets.

Here is a genuine issue to toss at the candidates in our election. In light of what the Soviet leader admits is ''a very serious financial problem,'' should U.S. policy seek to finance our adversary? Or should we ''stress'' Moscow now, as it surely would do to us if the roles were reversed?

Or should we use this moment of admitted Soviet economic weakness to put an irrevocable, verifiable, behavior-modifying price on every concession we confer?

water recycling essay

IMAGES

  1. Essay on Water Pollution In English

    water recycling essay

  2. Environmental Studies: Water Recycling

    water recycling essay

  3. IELTS Cambridge 16 Essay: Recycling Plastic Bottles

    water recycling essay

  4. Essays on The Importance of Recycling to Prevent Water Pollution. Free

    water recycling essay

  5. Water Recycling

    water recycling essay

  6. Environmental Studies: Water Recycling

    water recycling essay

COMMENTS

  1. Water Recycling

    Updated: Nov 1st, 2023 Table of Contents Introduction Recycled water is obtained from waste water and contaminated water that has been subjected to thorough treatment to ensure that it is proper for use for different purposes.

  2. Essay on Water Recycling

    February 18, 2024 Students are often asked to write an essay on Water Recycling in their schools and colleges. And if you're also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic. Let's take a look… 100 Words Essay on Water Recycling What is Water Recycling?

  3. Contributions of recycled wastewater to clean water and sanitation

    21 Altmetric Metrics Abstract Water resources are essential for every development activity, not only in terms of available quantity but also in terms of quality. Population growth and...

  4. Basic Information about Water Reuse

    Water reuse (also commonly known as water recycling or water reclamation) reclaims water from a variety of sources then treats and reuses it for beneficial purposes such as agriculture and irrigation, potable water supplies, groundwater replenishment, industrial processes, and environmental restoration. Water reuse can provide alternatives to ...

  5. Scaling up water reuse: Why recycling our wastewater makes sense

    IFC estimates that the cost of producing non-potable recycled water can be as low as $0.32 per cubic meter, and potable water $0.45, compared with more than $0.50 for desalination. Treatment of wastewater coupled with effluent reuse also has important direct climate benefits. In many cases, treating sewage water helps reduce greenhouse gas ...

  6. Water recycling goes mainstream

    Science. 4 Jan 2024. Vol 383, Issue 6678. p. 38. DOI: 10.1126/science.adl2392. Books. eLetters (0) Potable water reuse, also known as water recycling or by the moniker "toilet to tap," is the practice of deliberately incorporating treated wastewater into the drinking water supply. In Purified, journalist Peter Annin's vivid and engaging ...

  7. The Importance Of Water Recycling Environmental Sciences Essay

    This cycle is the path water takes as it circulates from the land to the sky and back again. 1.1 Water Recycling. Water recycling is a natural process which relies on technology to speed up such projects. It is sometimes described as 'unplanned' and 'planned' (GREYWATER RECYCLING SYSTEMS., 2010).

  8. Sustainable implementation of innovative technologies for water

    Closing the water cycle by either desalination or wastewater purification promises to provide virtually unlimited volumes of freshwater: in principle, it would enable an increase in water...

  9. Water Recycling Essay [840 Words] GradeMiners

    Introduction The world is currently in dire need for sustainable water sources. Currently, it is estimated that over 1 billion people lack access to clean water (Rodriguez et.al, 2009). The growing water deficiency can be attributed to climate change that causes erratic weather, declining freshwater sources, and the abuse and misuse of water.

  10. Wastewater Treatment and Reuse: a Review of its Applications ...

    Water scarcity is one of the major problems in the world and millions of people have no access to freshwater. Untreated wastewater is widely used for agriculture in many countries. This is one of the world-leading serious environmental and public health concerns. Instead of using untreated wastewater, treated wastewater has been found more applicable and ecofriendly option. Moreover ...

  11. Drivers and barriers to urban water reuse: A systematic review

    Following the standard systematic review protocols (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols [PRISMA]) [29], our search includes empirical studies on the drivers and barriers for urban water reuse from across the globe.Different than a critical or narrative review, in which the analysis engages a limited and potentially idiosyncratic selection of studies, the ...

  12. Water Recycling: Why Is It Important?

    Water Recycling: Why Is It Important? | Free Essay Example StudyCorgi Environment Water Recycling: Why Is It Important? Topics: Environment, Recycling, Water Words: 616 Pages: 3 Table of Contents Introduction Water shortage is a situation where the available water cannot meet the demands of the population sufficiently.

  13. Essay On Water Recycling

    Water recycling is a process of treating wastewater that oughts to provide benefits in the agriculture and landscape irrigation, industrial processes, toilet flushing and refilling a groundwater basin. We have this natural water cycle and through this the earth has recycled and reused water for millions of years.

  14. Environmental Studies: Water Recycling

    Environmental Studies: Water Recycling | Free Essay Example StudyCorgi Sciences Environmental Studies: Water Recycling Topics: Environment, Recycling, Water Words: 602 Pages: 3 Table of Contents Introduction Water shortage is a situation where the available water cannot meet the demands of the population sufficiently.

  15. Recycling Of Water Essay

    Recycling Of Water Essay. 1385 Words 6 Pages. Importance of Water Recycling Every civilization began around water and our planet consist of around 72% water. But only 2.5% of that is fresh water. The rest of 97.5% is in ocean and sea, which is not used for any human purposes. So, are humans using this 2.5% of water?

  16. WtERT

    Drinking Water Plant South-West Moscow - A challenge for a clean solution After international, functional invitation for tenders and comparison of the performances offered, the City of Moscow signed on August 7, 2003 the Project Implementation Contract for organising, financing, construction and operation of the Drinking Water Plant South-West Moscow with the German company WTE Wassertechnik ...

  17. Water Recycling Essays

    ORDER PAPER LIKE THIS INTRODUCTION Water recycling is a critical element for conservation of world's water resource. Recycled water or reclaimed water is the wastewater, which is being treated to remove solids and certain impurities.

  18. Essay on Importance of Water for Students in 1500+Words

    In this essay on importance of water for students and children in 1500+ word, we have covered its importance, use, sources, recycling, and saving water. Table of Contents Introduction (Essay on Importance of Water) Water is one of the essential resource on Earth that all plants and animals sure require surviving.

  19. Essay on Water Recycling

    Essay # 1. Meaning of Water Recycling: While recycling is a term generally applied to aluminum cans, glass bottles, and newspapers, water can be recycled as well.

  20. Essay on Recycling for Students and Children

    Essays Essay on Recycling for Students and Children 500+ Words Essay on Recycling Recycling is a method of procedure that includes the collection and breaking down of waste material to create something new out of it. The process was introduced sot that the non-biodegradable materials can be melted or break down to create something useful.

  21. Recycling water treatment sludge into a novel eco-friendly core-shell

    Disposal of water treatment sludge (WTS) has become an important issue of global environmental concern due to problems and costs. This study explored the feasibility of cold-bond methodology to produce an eco-friendly core-shell lightweight aggregate (LWA) from WTS, expanded perlite (EP), and cement. The effect of cement and WTS content on the properties of the LWA was studied. The findings ...

  22. ANNUAL WATER QUALITY REPORT

    producing drinking water that meets all state and federal drinking water standards. We continually strive to adopt new and better methods for delivering the best quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant to meeting the challenges of source water protection, water conservation, and

  23. Opinion

    A version of this article appears in print on , Section A, Page 31 of the National edition with the headline: Essay; Bailing Out Moscow. Order Reprints | Today's Paper | Subscribe.

  24. WasteTech-2017(Moscow)

    The forthcoming show will cover the full range of topics: waste management and recycling, wastewater treatment, renewable energy, air quality, reclamation of contaminated sites, industrial cleaning, improvement of territories, labor safety. ... Pacific Water Conference 2024 2/20/2024 - 2/22/2024 Honolulu HI, United States: